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We demonstrate that modal transition systems with variability constraints are equally 
expressive as featured transition systems, by defining a transformation of the latter into 
the former, a transformation of the former into the latter, and proving the soundness and 
completeness of both transformations. Modal transition systems and featured transition 
systems are widely recognised as fundamental behavioural models for software product 
lines and our results thus contribute to the expressiveness hierarchy of such basic models 
studied in other papers published in this journal.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Modern software systems are often developed and managed as software product lines (SPLs) to allow for mass customi-
sation of many individual product variants [1]. The variability among the instances of such highly-configurable, variant-rich 
systems is expressed in terms of features, which conceptualise pieces of functionality or aspects of a system that are relevant 
to the stakeholders [2]. Foundational formal models for the specification and verification of SPL behaviour have been the 
subject of extensive research throughout the last decade [3–16]. Most fundamental behavioural models for SPLs are based 
on the superimposition of multiple labelled transition systems (LTSs), each of which represents a different variant (a prod-
uct model), in one single LTS enriched with feature-based variability (a family model). Consequently, a family’s products, i.e. 
ordinary LTSs, can be derived from the enriched LTS by resolving this variability. This boils down to deciding which ‘variable’ 
(i.e. optional) behaviour to include in a specific product and which not, based on the combination of features defining the 
product.

In [17], some of the most fundamental behavioural models for SPLs were compared with respect to their expressiveness, 
which was defined as the set of (product) variants (modelled as LTSs) that can be derived from these models according to 
some (product derivation) refinement relation. In particular, it was demonstrated that modal transition systems (MTSs) are 
less expressive than featured transition systems (FTSs). Furthermore, an FTS was provided for which it was demonstrated 
that it cannot be encoded as an MTS.
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In [18], we informally presented an automatic technique to transform an FTS into an MTS with variability con-
straints (MTSυ), which is an extension of MTSs introduced in [15], and we sketched a proof of the soundness of this 
model transformation (cf. Theorem 1 in [18]). In this paper, we contribute to the expressiveness hierarchy of fundamen-
tal behavioural models for SPLs studied in [17], by proving that finite-state MTSυs are equally expressive as finite-state 
FTSs:

• We first prove that MTSυs are at least as expressive as FTSs by defining an algorithm that transforms any FTS into 
an MTSυ and proving its soundness and completeness (i.e. an MTSυ results with the same set of variant LTSs as the 
original FTS)—we thus formalise and improve the procedure sketched informally in [18]. Moreover, to illustrate our 
result, we transform both the aforementioned FTS from [17], reproduced in Example 25, and a more elaborate SPL 
example from [11], into MTSυs.

• Next, we prove that MTSυs are equally expressive as FTSs by defining an algorithm that transforms any MTSυ into an 
FTS and proving its soundness and completeness (i.e. an FTS results with the same set of variant LTSs as the original 
MTSυ). We illustrate this by an example.

Moreover, the transformation algorithm from FTS to MTSυ preserves the original (compact) branching structure, thus paving 
the way for using an (optimised) version for family-based SPL model checking of FTSs with the variability model checker 
VMC [19,20], which currently accepts only MTSυ .

The outline of the paper is as follows. In Section 2, we define LTSs and a few standard notions used in the sequel, after 
which we define FTSs and MTSυs in Sections 3 and 4, respectively. Our main contributions are presented next: in Section 5, 
we present an algorithm to transform any FTS into an MTSυ with a proof of soundness and completeness, followed in 
Section 6 by an algorithm to transform any MTSυ into an FTS together with its soundness and completeness proof. In 
Section 7, we embed our results in the literature, after which Section 8 concludes the paper and mentions possible future 
work.

2. Labelled transition systems

We start by introducing LTSs which are the common underlying (semantic) structure for FTSs and MTSs.

Definition 1 (Labelled transition system). A labelled transition system is a quadruple (Q , �, ̄q, δ), where Q is a finite (non-
empty) set of states, � is a set of actions, q̄ ∈ Q is an initial state, and δ ⊆ Q × � × Q is a transition relation. We call 
(q, a, q′) ∈ δ an a-transition (from source q to target q′) and we may also write it as q a−−→ q′ .

We formalise two standard notions concerning LTSs in the next definition.

Definition 2 (Path, reachable). Let L = (Q , �, ̄q, δ) be an LTS. Then σ is a path of L if σ = q̄ (empty path) or σ =
q1a1q2a2q3 · · · with q1 = q̄ and qi

ai−−→ qi+1 for all i > 0 (possibly infinite path); its ith state is denoted by σ(i) and its 
ith action is denoted by σ {i}. A state q ∈ Q is reachable in L if there exists a path σ such that σ(i) = q for some i > 0. An 
action a ∈ � is reachable in L if there exists a path σ such that σ {i} = a, for some i > 0.

Example 3. In Fig. 1, we depict an LTS with 7 actions (E, x, a, m, p, �, e). Paths start from initial state 1, including infinite 
path 1E2x3a6m7p8�9e1 · · · which implies that all states and all actions are reachable.

Since we will be studying the expressiveness of behavioural models, we restrict our attention to LTSs without unreach-
able states. In particular, when deriving an LTS from an FTS we will drop all the unreachable states and both their ingoing 
and their outgoing transitions. Note, however, that we will admit LTSs including unreachable actions (i.e. not labelling tran-
sitions) as is done, e.g., in [21]. This is because we will study sets of LTSs (i.e. product models) generated from a common 
set of actions (viz. of the family model).

We define an action relabelling for LTSs, which will be used in the sequel.

Definition 4 (Action relabelling). Let L = (Q , �1, ̄q, δ) be an LTS and let ρ : �1 → �2 be a relabelling function. The 
ρ-relabelling of L is the LTS ρ(L) = (Q , �2, ̄q, { (q, ρ(a), q′) | (q, a, q′) ∈ δ }).

Relabelling is commonly adopted to reuse a given specification (model) with different action names.
It is worth noting that the above relabelling function is not required to be injective, in accord with similar operators 

defined in [21–23]. This choice allows us to collapse different actions to the same action (e.g. it is quite usual to collapse 
different actions on a generic (irrelevant) internal action).
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