ELSEVIER Contents lists available at ScienceDirect ## Journal of Chromatography B journal homepage: www.elsevier.com/locate/chromb # Purification of hepatitis B surface antigen virus-like particles from recombinant *Pichia pastoris* and *in vivo* analysis of their immunogenic properties Chandrasekhar Gurramkonda ^{a,b,c,*}, Maria Zahid ^d, Satish Kumar Nemani ^d, Ahmad Adnan ^{a,1}, Satheesh Kumar Gudi ^b, Navin Khanna ^b, Thomas Ebensen ^e, Heinrich Lünsdorf ^e, Carlos A. Guzmán ^e, Ursula Rinas ^{a,d,**} - ^a Department of Structural Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany - ^b International Centre for Genetic Engineering and Biotechnology, New Delhi, India - ^c Technology Research Centre, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, USA - ^d Institute of Technical Chemistry Life Sciences, University of Hannover, Hannover, Germany - e Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany #### ARTICLE INFO #### Article history: Received 15 March 2013 Accepted 22 September 2013 Available online 27 September 2013 Keywords: Hepatitis B surface antigen virus-like particles Aerosil-380 Ion-exchange chromatography Ultracentrifugation Size-exclusion chromatography Electron microscopy Vaccine #### ABSTRACT Following earlier studies on high-level intracellular production of hepatitis B surface antigen (HBsAg) using recombinant Pichia pastoris, we present here in detail an enhanced method for the purification of recombinant HBsAg virus-like particles (VLPs). We have screened various detergents for their ability to promote the solubilization of recombinant intracellular HBsAg. In addition, we have analyzed the effect of cell disruption and extraction regarding their impact on the release of HBsAg. Our results show that introduction of the mild nonionic detergent Tween 20 in the initial process of cell lysis at \sim 600 bars by high pressure homogenization leads to the best results. The subsequent purification steps involved polyethylene glycol precipitation of host cell contaminants, hydrophobic adsorption of HBsAg to colloidal silica followed by ion-exchange chromatography and either isopycnic density ultracentrifugation or size exclusion chromatography for the recovery of the VLPs. After final KSCN treatment and dialysis, a total yield of \sim 3% with a purity of >99% was reached. The pure protein was characterized by electron microscopy, showing the presence of uniform VLPs which are the pre-requisite for immunogenicity. The intramuscular co-administration of HBsAg VLPs, with either alum or a PEGylated-derivative of the toll-like receptor 2/6 agonist MALP-2, to mice resulted in the elicitation of significantly higher HBsAgspecific IgG titers as well as a stronger cellular immune response compared to mice vaccinated with a gold standard vaccine (Engerix TM). These results show that P. pastoris derived HBsAg VLPs exhibit a high potential as a superior biosimilar vaccine against hepatitis B. © 2013 Elsevier B.V. All rights reserved. #### 1. Introduction The development of a safe recombinant hepatitis B vaccine has led to the inclusion of hepatitis B vaccination in the national infant immunization schedules of approximately 160 countries [1]. Recombinant DNA technology was used to produce hepatitis B surface antigen (HBsAg) in form of virus-like particles (VLPs) using the yeast *Saccharomyces cerevisiae* leading to the development of a so-called "second" generation hepatitis B vaccine and the first recombinant subunit vaccine available [2]. This formulation of the hepatitis B vaccine has been on the market since 1986. Initially, HBsAg VLPs of ~22 nm were purified from the plasma of asymptomatic HBV carriers, but due to safety issues and restricted supply, the "first" generation plasma-derived vaccines are no longer in use [2]. Nowadays, as patents have expired, "third" generation "biosimilar" recombinant HBsAg VLP-based vaccines are being introduced into the market by a variety of new manufacturers which try to make the vaccine also more affordable to developing countries [2]. As HBsAg is a very hydrophobic protein, secretion is inefficient in yeast and high-level production has been only achieved as intracellular product. The purification of recombinant HBsAg from ^{*} Corresponding author at: Technology Research Centre, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, USA. Tel.: +1 4104555795. ^{**} Corresponding author at: Helmholtz Centre for Infection Research, Braunschweig, Germany. E-mail addresses: chskrg@umbc.edu (C. Gurramkonda), ursula.rinas@helmholtz-hzi.de (U. Rinas). ¹ Current address: Department of Chemistry, GC University Lahore, Pakistan. **Table 1**Snapshot view on purification processes for hepatitis B surface antigen from yeast cultures. | Host | Purification steps | Ref. | | | | |----------------------------|---|------|--|--|--| | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow Amicon concentration \rightarrow XAD-2 \rightarrow centrifugation \rightarrow Aerosil-380 \rightarrow butyl agarose | [3] | | | | | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow Aerosil-380 \rightarrow ammonium sulfate precipitation \rightarrow Sepharose 4B | [4] | | | | | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow Aerosil-380 \rightarrow ECTHAM-cellulose \rightarrow Sepharose 6B \rightarrow ammonium thiocynate treatment \rightarrow dialysis | | | | | | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow urea treatment \rightarrow Aerosil-380 \rightarrow Amicon concentration \rightarrow Sepharose CL-4B \rightarrow dextran sulfate \rightarrow CsCl ultracentrifugation | | | | | | S. cerevisiae | Lysis \rightarrow PEG followed by acetic acid treatment \rightarrow calcium chloride treatment \rightarrow centrifugation \rightarrow Amicon concentration \rightarrow Fractogel TSK HW65(F) \rightarrow Fractogel TSK DEAE 650 (M) \rightarrow Fractogel TSK HW65(F) | | | | | | S. cerevisiae | Lysis \rightarrow PEG followed by acetic acid treatment \rightarrow calcium chloride treatment \rightarrow centrifugation \rightarrow Amicon concentration \rightarrow Fractogel TSK HW65(F) \rightarrow Fractogel TSK DEAE 650 (M) \rightarrow Fractogel TSK HW65(F) | | | | | | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow solubilization using Triton X-100 \rightarrow concentration \rightarrow diafiltration \rightarrow urea treatment \rightarrow diafiltration \rightarrow KSCN \rightarrow dialysis | | | | | | S. cerevisiae | Lysis \rightarrow acidification \rightarrow centrifugation \rightarrow ammonium sulfate precipitation at pH 6.5 \rightarrow centrifugation \rightarrow suspension of precipitate \rightarrow dialysis \rightarrow hydroxyapatite (repeat: 2 times) \rightarrow dialysis followed by ultrafiltration | [10] | | | | | S. cerevisiae ^a | Precipitation \rightarrow immunoaffinity chromatography \rightarrow size-exclusion chromatography | [11] | | | | | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow PEG precipitation (8%) \rightarrow centrifugation \rightarrow pellet suspension and homogenization \rightarrow PEG precipitation (3%) \rightarrow centrifugation \rightarrow PEG precipitation (8%) \rightarrow Centrifugation \rightarrow Pellet suspension and homogenization \rightarrow diafiltration \rightarrow sucrose density gradient centrifugation \rightarrow ultrafiltration \rightarrow CsCl ultracentrifugation \rightarrow diafiltration \rightarrow TSK HW 65 \rightarrow CsCl ultracentrifugation \rightarrow dialysis and ultrafiltration | [12] | | | | | S. cerevisiae | Lysis \rightarrow centrifugation \rightarrow detergent treatment \rightarrow centrifugation \rightarrow XAD-4 \rightarrow hydrophobic interaction chromatography | [13] | | | | | H. polymorpha | Lysis \rightarrow precipitation of cell debris with PEG \rightarrow separation of PEG supernatant \rightarrow adsorbtion on a silica matrix \rightarrow separation of the silica matrix \rightarrow desorption of the product from the silica matrix \rightarrow separation of the supernatant of the silica matrix \rightarrow ion exchange chromatography \rightarrow ultrafiltration \rightarrow density gradient ultracentrifugation \rightarrow size-exclusion chromatography \rightarrow sterile filtration | [14] | | | | | H. polymorpha | $Lysis \rightarrow centrifugation \rightarrow anion\ exchange\ chromatography \rightarrow butyl-S\ QZT \rightarrow ultrafiltration \rightarrow size-exclusion\ chromatography$ | [15] | | | | | P. pastoris | Lysis → acid precipitation → Hyflo Super Cel | [16] | | | | | P. pastoris | Lysis \rightarrow centrifugation \rightarrow Amberlyte XAD-2 column \rightarrow Macroprep High Q chromatography \rightarrow cellufine sulfate chromatography \rightarrow ultrafiltration \rightarrow formulation | | | | | | P. pastoris | Lysis \rightarrow centrifugation \rightarrow treatment with colloidal silica \rightarrow Macroprep High Q chromatography \rightarrow butyl Sepharose-4 fast flow \rightarrow ultrafiltration \rightarrow Sepharose CL-4B \rightarrow ultrafiltration \rightarrow formulation | [18] | | | | | P. pastoris | Lysis \rightarrow centrifugation \rightarrow acid precipitation \rightarrow Aerosil-380 \rightarrow immunoaffinity chromatography \rightarrow ion-exchange chromatography \rightarrow size-exclusion chromatography | [19] | | | | | P. pastoris | Lysis \rightarrow centrifugation \rightarrow Aerosil-380 \rightarrow DEAE Toyopearl 650M \rightarrow HiLoad Superdex 75 | [20] | | | | | P. pastoris | $Lysis \rightarrow centrifugation \rightarrow ultrafiltration of supernatant \rightarrow immuno affinity purification \rightarrow ultrafiltration$ | [21] | | | | | P. pastoris | Lysis → centrifugation → membrane extraction with detergent → centrifugation → "HIMAX" technology → centrifugation → DEAE → diafiltration | [22] | | | | | P. pastoris | Lysis \rightarrow precipitation \rightarrow centrifugation \rightarrow Phenyl-5PW HIC \rightarrow ultracentrifugation | [23] | | | | | P. pastoris | Lysis \rightarrow PEG precipitation \rightarrow centrifugation \rightarrow Aerosil-380 \rightarrow DEAE Sepharose FF \rightarrow ultracentrifugation \rightarrow KSCN treatment and dialysis \rightarrow formulation | [24] | | | | | P. pastoris | Lysis \rightarrow centrifugation \rightarrow membrane extraction \rightarrow centrifugation \rightarrow PEG precipitation \rightarrow centrifugation \rightarrow diafiltration \rightarrow phenyl 600M \rightarrow size exclusion chromatography \rightarrow dialysis | [25] | | | | $^{^{\}rm a}\,$ HBsAg was secreted into the culture medium. yeast cultures is well documented [3–25] [see Tables 1 and 2] and several studies have shown that purified yeast-derived HBsAgcan assemble into characteristic \sim 22 nm VLPs [26–29]. These particles are highly immunogenic and capable of eliciting potent neutralizing antibodies as they mimic the conformation of native viruses but lack the viral genome and can be used as safe and cheap vaccine [26.30–32]. Previously, we have reported a simple fed-batch technique which leads to the production of \sim 6–7 g/l HBsAg, with 30% in a "soluble" form competent for assembly into VLPs [29]. Although, the purification of HBsAg VLPs was reported before in the Methods section [24], optimization studies of the extraction conditions, details of the purification of HBsAg VLPs and the final characterization of their immunogenic properties were not reported. Here, a simple strategy is outlined for the purification of HBsAg leading to VLPs with satisfactory yields, high purity and excellent quality. Finally, we provide evidence in mice about the superior immunogenic properties of these HBsAg VLPs as a parenteral subunit vaccine in combination with either alum or a novel adjuvant, the TLR2/6 agonist MALP-2. **Table 2**Purification of HBsAg from yeast cultures using ultracentrifugation (UC) or size exclusion chromatography (SEC) as final step (prior to KSCN treatment) ^a | Yeast | Purification steps ^b | Final recovery ^c (mg/l culture broth) | Purity ^c (%) | Reference | |----------------|---------------------------------|--|-------------------------|------------| | S. cerevisiae | 6 ^{UC} | ~0.3 | 90 | [6] | | S. cerevisiae | 13 ^{UC} | nd | nd | [12] | | P. pastoris | 3 ^{uc} | 10 | nd | [23] | | P. pastoris | 4 ^{UC} | nd | nd | [24] | | S. cerevisiaed | 3 ^{SEC} | $\sim \! 0.06$ | nd | [11] | | H. polymorpha | 5 ^{SEC} | nd | 95 | [14] | | H. polymorpha | 4 ^{SEC} | nd | 99 | [15] | | P. pastoris | 4 ^{SEC} | nd | 95 | [17] | | P. pastoris | 5 ^{SEC} | nd | 95 | [19] | | P. pastoris | 4 ^{UC} or SEC | ~50 | >99 | This study | UC (ultracentrifugation), SEC (size exclusion chromatography), nd (not determined). ^a Only references on HBsAg purification included containing respective quantitative data. b Number of purification steps before final ultracentrifugation (UC) or size exclusion chromatography (SEC); normal centrifugation step is not considered as purification tep. ^c Recovery and purity relates to the final pure bulk protein. ^d HBsAg was secreted into the culture medium. ### Download English Version: # https://daneshyari.com/en/article/1213031 Download Persian Version: https://daneshyari.com/article/1213031 <u>Daneshyari.com</u>