Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

Simultaneous determination of ceftaroline, daptomycin, linezolid and rifampicin concentrations in human plasma by on-line solid phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometry

M. Grégoire^{a,b,*}, A.G. Leroy^c, R. Bouquié^{a,d}, D. Malandain^c, E. Dailly^{a,b}, D. Boutoille^{b,e}, C. Renaud^a, P. Jolliet^{a,d}, J. Caillon^{b,c}, G. Deslandes^a

^a Clinical Pharmacology Department, University Hospital of Nantes, Nantes, France

^b EA 3826Clinical and Experimental Therapy of Infectious Diseases, University of Nantes, France

^c Bacteriology Department, University Hospital of Nantes, Nantes, France

^d EA 4275 Biostatistics, Subjective Measures and Clinical Research in Health, University of Nantes, France

^e Infectious Diseases Department, University Hospital of Nantes, Nantes, France

ARTICLE INFO

Article history: Received 13 July 2015 Received in revised form 30 September 2015 Accepted 6 October 2015 Available online 26 October 2015

Keywords: Ceftaroline Daptomycin Linezolid Rifampicin 25-O-Desacetylrifampicin

ABSTRACT

Methicillin-resistant *Staphylococcus aureus* infection is a serious clinical problem worldwide. Ceftaroline, daptomycin, linezolid in combination with rifampicin are particularly used in this indication. To allow monitoring of these antibiotics, an on-line solid phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometry assay requiring a 100 µL aliquot of human plasma has been developed. Besides, significance of 25-*O*-desacetylrifampicin concentrations was evaluated.

Sample pre-treatment is limited to protein precipitation with methanol. After centrifugation $10 \,\mu\text{L}$ of supernatant are injected into the chromatographic system, which consists of an on-line solid phase extraction followed by a separation on a phenyl-hexyl column and detected by a tandem mass spectrometer. Plasma drug concentrations were determined by multiple reaction monitoring in positive ion mode, and assay performance was evaluated. 25-O-Desacetylrifampicin activity, was compared to rifampicin using a microbiological method.

Sample preparation using methanol precipitation followed by solid-phase extraction yielded good recovery and ionization efficiency, with chromatographic separation achieved within 3 min per sample. Within-run and between-run precisions ranged respectively from 1.22% to 9.35% and from 1.61% to 9.36%. Lower limits of quantification were 0.04 mg/L for linezolid, 0.1 mg/L for rifampicin, 0.2 mg/L for ceftaroline and 0.5 mg/L for daptomycin. It appears that 25-*O*-desacetylrifampicin displays a substantial intrinsic bactericidal activity against *S. aureus*.

This assay provides simple, rapid, sensitive and accurate quantification of the four antibiotic drugs and one metabolite and can be routinely used to monitor drug concentration in methicillin-resistant *S. aureus* infected patients.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

According to the 2013 European Centre for Disease Prevention and Control report, methicillin-resistant *Staphylococcus aureus* (MRSA) range between 0 and 64.5% of the isolated *S. aureus* strains

E-mail address: matthieu.gregoire@chu-nantes.fr (M. Grégoire).

http://dx.doi.org/10.1016/j.jpba.2015.10.008 0731-7085/© 2015 Elsevier B.V. All rights reserved. in European countries [1]. Since the beginning of the 2000s in United States of America, the appearance of community-associated MRSA infections represents a major public health issue [2]. Glycopeptide antibiotics and especially vancomycin are the most employed agents in case of MRSA infections. However, given the toxicity of these antibiotics, the growing risk of vancomycinresistant *S. aureus* and the uncertainties concerning efficacy of these drugs, novel agents were developed in the fifteen past years to struggle against MRSA and other multi-drug resistant bacteria infections [3]. Among them daptomycin (lipopeptide),

^{*} Corresponding author at: Laboratoire de Pharmacologie Clinique, Hôtel Dieu, 9 Quai Moncousu, 44093 Nantes Cedex, France. Fax: +33 2 40 08 23 41.

Antibiotic drugs and MRM transitions used for detection, DP, EP, CEP, CE and CXP for API 3200, and retention times for the phenyl-hexyl HPLC column.

	MRM Transition (m/z) Precursor ion-product ion	Retention time (min)	DP(V)	EP(V)	CEP (V)	CE (eV)	CXP(V)
Ceftaroline	605-208.1	0.96	51	9.5	28	39	6
Daptomycin	811.1-159.1	0.96	51	12	30	65	4
Rifampicin	823.3-791.3	0.95	76	3.5	70	27	16
25-0-Desacetylrifampicin	781.4-749.3	0.95	36	7.5	30	23	10
Llinezolid	338.1-296.1	0.95	61	10.5	16	23	10
² H ₄ -Ceftaroline	609.0-212.1	0.97	51	9.5	28	39	6
² H ₈ -Rifampicin	831.3-799.3	0.95	76	3.5	70	27	16

DP: declustering potential, EP: entrance potential, CEP: cell entrance potential, CE: collision energy, CXP: cell exit potential.

linezolid (oxazolidinone) and ceftaroline (advanced-generation cephalosporin) are increasingly used. Added to them, rifampicin (rifamycin), usually used to treat tuberculosis infections is also employed. Its main metabolite, 25-O-desacetylrifampicin, appears to have an intrinsic antibacterial activity but no published studies prove that [4]. To maximize the follow-up of the infected patients by the way of therapeutic drug monitoring, measurement of plasma concentrations could be an interesting tool. Indeed, there are demonstrated relations between plasma concentrations and efficacy and/or toxicity [5-12]. Many assays using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were reported to measure simultaneously with other agents or alone these antibacterial drugs but currently none allows the measurement of ceftaroline plasma concentrations [13-33]. Here we proposed an on-line solid phase extraction (SPE) coupled to LC-MS/MS turnkey method with a simple sample pre-treatment which can be easily used for the therapeutic drug monitoring of four anti-MRSA agents concentrations in the plasma of infected patients. This method was validated according to the FDA, EMEA and French committee of accreditation guidelines [34-36]. Besides, we proposed an evaluation of the intrinsic bactericidal activity of the 25-O-desacetylrifampicin.

2. Material and methods

2.1. Chemicals and reagents

Methanol, acetic acid and ammonium acetate were purchased from VWR International (Fontenay-sous-bois, France). Methanol and water were HPLC grade. Each molecule is measured using a deuterated internal standard: ceftaroline (purity > 99%) was graciously given by AstraZeneca (Rueil-Malmaison, France), daptomycin (Cubicin[®] 350 mg), rifampicin (Rifadine[®] 600 mg) and linezolid (Zyvoxid[®] 2 mg/mL) were respectively purchased from Novartis (Rueil-Malmaison, France), Sanofi-Aventis (Paris, France), and Pfizer (Paris, France). 25-O-Desacetylrifampicin (purity > 99%), ceftaroline-d4 (purity: 97.5%, isotopic purity \ge 99%) and rifampicind8 (purity: 97.5%, isotopic purity \ge 99%) were purchased from Alsachim, (Strasbourg, France). Features are listed in Table 1.

2.2. Standard solutions and ISs

Stock solutions were prepared as follows: rifampicin (methanol including 500 mg/L of ascorbic acid) and daptomycin (water) at a concentration of 10,000 mg/L, linezolid (methanol) and 25-O-desacetylrifampicin (methanol including 500 mg/L of ascorbic acid) at a concentration of 2000 mg/L and ceftaroline (methanol), ceftaroline-d4 (methanol) and rifampicin-d8 (methanol including 500 mg/L of ascorbic acid) at a concentration of 1000 mg/L.

For the calibration samples, a working solution was firstly prepared by diluting the stock solution in methanol to a final concentration of 1000 mg/L for daptomycin, 400 mg/L for ceftaroline, 80 mg/L for linezolid and 200 mg/L for rifampicin and 25-O-desacetylrifampicin. 50 µL of this solution was mixed with

 $450\,\mu\text{L}$ of drug-free human plasma (collected with K₃EDTA as anticoagulant) to obtain the highest calibration sample. The other calibration samples were prepared by successive dilutions in drugfree plasma from the highest calibration sample.

2.3. Calibration curves, quality controls and sample preparation

Eight-point calibration curves (0.2, 0.5, 1, 2, 5, 10, 20, 40 mg/L for ceftaroline, 0.5, 1.25, 2.5, 5, 12.5, 25, 50, 100 mg/L for daptomycin, 0.04, 0.1, 0.2, 0.4, 1, 2, 4, 8 for linezolid and 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 20 mg/L for rifampicin and 25-O-desacetylrifampicin) were calculated (area ratio using the internal standard versus nominal concentration) and fitted either by a linear regression or by a quadratic regression. The concentrations were back-calculated and the model with the lowest deviation between the calculated and nominal concentrations was retained.

For the quality controls, 3 different levels solutions (high, medium and low) were prepared by diluting the working solution in drug-free human plasma to respective-final concentrations of 32, 3.2 and 0.25 mg/L for ceftaroline, 80, 8 and 0.625 mg/L for daptomycin and 16, 1.6 and 0.125 mg/L for linezolid, rifampicin and 25-O-desacetylrifampicin.

The blood samples with K₃EDTA as anticoagulant were centrifuged at $1800 \times g$ for 10 min at 4°C. 100μ L of plasma was treated with 200 μ L of methanol as precipitation reagent including 3.3 mg/L of ceftaroline-d4 and rifampicine-d8, used as internal standards respectively for ceftaroline and linezolid and for daptomycin, rifampicin and 25-O-desacetylrifampicin, in a 1.5 mL polypropylene tube (Eppendorf, Le Pecq, France). Samples were immediately vortexed and then centrifuged at 13 000 \times g for 15 min at 4°C. Then, 200 μ L of supernatant was transferred into a 200 μ L sample vial (Interchim, Montluçon, France) and 10 μ L was injected into the chromatographic system.

2.4. On-line solid phase extraction coupled to LC–MS/MS conditions

2.4.1. Chromatographic conditions

Chromatographic system consisted of Agilent (Palo Alto, CA, USA) 1200 Series components including binary pump, isocratic pump, column oven, a ten-port switching valve and an autosampler. The hardware configuration included an Applied Biosystems (Foster City, CA, USA) API 3200[®] equipped with a Turbolonspray source. On-line SPE was performed using a perfusion column (POROS[®] R1/20, 2.1 mm × 30 mm, Applied Biosystems, Foster City, CA, USA). The HPLC column was a short phenyl-hexyl column (phenomenex luna 5 μ m phenyl-hexyl, 2 mm × 50 mm, Aschaffenburg, Germany). Data analysis was performed using the Analyst 1.4.2 software package (Applied Biosystems, Foster City, CA, USA).

The chromatographic conditions and the pumps and valves configurations are shown in Fig. 1. A $10\,\mu$ L aliquot of supernatant from each prepared sample was injected. The binary pump supplied eluent A (water–acetic acid (99.9:0.1, v/v)-ammonium acetate $10\,\text{mM}$) for drug binding onto the online-SPE column

Download English Version:

https://daneshyari.com/en/article/1220643

Download Persian Version:

https://daneshyari.com/article/1220643

Daneshyari.com