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a  b  s  t  r  a  c  t

Peptides’  retention  time  prediction  is  gaining  increasing  popularity  in  liquid  chromatography–tandem
mass  spectrometry  (LC–MS/MS)-based  proteomics.  This  is  a promising  approach  for  improving  successful
proteome  mapping,  useful  both  in identification  and quantification  workflows.  In  this  work,  a  quantita-
tive  structure-retention  relationships  (QSRR)  model  for its  direct  prediction  from  the  molecular  structure
of 185  peptides  originating  from 8 well-characterized  proteins  and  two Bacillus  subtilis  proteomes  has
been  developed.  Genetic  Algorithm  (GA)  was used  for selection  of a subset  of  molecular  descriptors  cou-
pled with  three  machine  learning  methods:  Support  Vector  Regression  (SVR),  Artificial  Neural  Networks
(ANN),  and  kernel  Partial  Least  Squares  (kPLS)  for regression.  Final  GA-SVR,  GA-ANN,  and  GA-kPLS  models
were validated  through  an external  validation  set  of 95  peptides  originating  from  the  human  epithelial
HeLa  cells  proteomes.  Robustness  and  stability  was  ensured  by  defining  their  applicability  domain.  The
descriptors  of the  developed  models  were  interpreted  confirming  a  causal  relationship  between  param-
eters  of molecular  structure  and  retention  time.  GA-SVR  model  has  shown  to be  superior  over the others
in  terms  of  both  predictive  ability,  and  interpretation  of  the  selected  descriptors.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The discoveries in the field of systems biology highlight the fact
that many different types of molecules (e.g., genes, mRNAs, pro-
teins and metabolites) co-exist in the living organisms in contextual
relationships [1]. Widely investigated biomolecules—proteins, are
important components of these interactive networks. With the
rising development of new analytical techniques, experimental
approaches and bioinformatics tools, especially in the field of mass
spectrometry (MS)-based proteomics, large-scale studies on struc-
ture and function of entire protein families has become possible.
This led to birth of a novel interdisciplinary scientific domain: pro-
teomics [2].

In an area referred to as shotgun proteomics [3], in which
proteins are broken down into peptides, reversed-phase high
performance liquid chromatography coupled with tandem mass

∗ Corresponding author. Fax: +48 58 3491635.
E-mail address: tbaczek@gumed.edu.pl (T. Bączek).

spectrometry (RP-LC–MS/MS) allows for their fast, accurate, and
direct analysis [4]. RP-LC is powerful in separating them, while
MS/MS  allows for their accurate identification by making use of
database search algorithms such as Sequest [5], which was utilized
in this work.

Peptides’ retention time is a parameter that can be easily
extracted from LC–MS data, and can support their identification. As
there is usually little a priori knowledge about peptides compos-
ing the investigated proteomic samples in the discovery studies,
the prediction of their retention times becomes more and more
popular [6]. Recently, peptide retention time prediction has been
gaining a lot of attention also in data-independent-acquisition MS
proteomics workflows, such as SWATH, allowing for simultane-
ous qualitative and quantitative proteome profiling [7]. Among
different approaches for peptides’ retention time prediction, quan-
titative structure-retention relationships (QSRR) [8–11] models are
steadily being integrated as an important segment of shotgun pro-
teomics. Their applications include: proteome-wide retention time
prediction [6], improvement of peptide identification [13], and
prediction of their elution order [12]. Scarcity of peptide QSRR
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applications and publications is in part due to complex modeling
of peptide structures, and high computational cost of their opti-
mization. Apart from molecular structure optimization, variable
selection is another crucial aspect of QSRR model development. Our
previous work [14] has shown that a properly optimized Genetic
Algorithm (GA) [15] exhibits exceptional performance in tackling
this issue, where it was coupled with Partial Least Squares [16]
for regression. However, since the relationship between molecu-
lar descriptors and retention time is non-linear for peptides with
long sequences [12] (i.e., with a mass of over 5 kDa), use of machine
learning methods is encouraged. There are a few studies detailing
development of machine learning-based QSRR models.

Thereby, Tian et al. [17] employed Support Vector Regression
(RF) [18,19]. Random Forests (RF) [20], and Gaussian Process (GP)
[21] for modeling a set of 2042 peptides originating from the
Drosophila melanogaster proteome. The authors report satisfactory
model performance and confirm the usefulness of the mentioned
methods for systematic QSRR modeling of a proteome-wide pep-
tide dataset.

Shinoda et al. [6] employed Artificial Neural Networks (ANN)
[22] for proteome-wide predictions of retention times of peptides
originating from the Escherichia coli. Petritis et al. also employed
ANNs for development of a QSRR model based on a training set
of peptides originating from Deinococcus radioduranans proteome
validated with a set of peptides originating from Shewanella onei-
densis proteome [23]; as well as a model for peptides originating
from Saccharomyces cerevisiae [24]. In both instances the authors
used experimental descriptors to model LC retention time, requir-
ing even further experiments. This limitation was overcome by
Golmohammadi et al. [25] in which the authors used theoretical
descriptors to develop SVR and ANN QSRR models for a set of 93
peptides with a known amino acid composition.

In this work, we employed three state-of-the-art machine learn-
ing methods: Support Vector Regression (SVR) [18,19]. Artificial
Neural Networks (ANN) [22], and kernel Partial Least Squares (kPLS)
[26].

The developed models were validated through an independent
external set of 95 peptides originating from the human epithelial
HeLa cells proteome. Their applicability domains were defined, and
they were thoroughly interpreted confirming a causal relationship
between the molecular descriptors and retention time.

2. Materials and methods

2.1. RP-LC–MS/MS analysis

2.1.1. Sample preparation
Aqueous solutions of bovine milk �-casein, human serum albu-

min, bovine serum albumin, chicken egg ovalbumin, ribonuclease
B, bovine milk lactoglobulin, bovine myoglobin, insulin-like growth
factor-binding protein 1 (purified from human amniotic fluid using
a previously reported procedure [27]) were prepared in a concen-
tration of 3 mg/mL.

Bacillus subtilis proteins, at the concentration of 1.2–1.5 mg/mL,
were obtained after extraction from endospores of the strains 168
and �prpE as reported in [28].

Human epithelial HeLa cells (2 × 106, seeded in 6 cm plates in
1 mL  growth medium per well) were cultured as described by
Doszczak et al. [29]. Subsequently, the cells were incubated for 4 h
with: (1) 100 U/mL recombinant human interleukin-1 alpha (IL-1�;
eBioscience, Vienna, Austria)—HeLaIL-1�;  (2) 25 �g/mL cyclohex-
imide (CHX)—HeLaCHX; (3) both 100 U/mL IL-1� and 25 �g/mL
CHX—HeLaIL-1�/CHX; or (4) alone as a control—HeLaK. After stim-
ulation, the media were discarded. The cells were washed on ice in
phosphate buffered saline (Oxoid, Basingstoke, UK) and harvested

from the plate. Subsequently, they were centrifuged (1000 × g) and
the cell precipitates were lysed with lysis buffer: 10 mM Tris–HCl
pH 7, 1 mM EDTA, 250 mM saccharose; with freeze-thawing and
sonication to obtain total lysis. The protein concentration in the
collected supernatants was about 0.2 mg/mL.

The protein samples were reduced by incubating with 100 mM
dithiotreitol (DTT, in freshly prepared 100 mM ammonium bicar-
bonate), at 60 ◦C for 30 min. After that, trypsin was added to the
samples (enzyme to substrate ratio 1:50). The proteolytic diges-
tion was performed for 12 h at 37 ◦C and trifluorocaetic acid (TFA)
added to quench the reaction. The concentrations of the obtained
peptide mixtures were about 0.1 �g/�L.

The protein standards, chemicals (DTT, TFA, ammonium bicar-
bonate, CHX, lysis buffers components) and MS-grade trypsin
used in this study were purchased at Sigma-Aldrich (Steinheim,
Germany), if not otherwise stated. Water used in the presented
experiments was  deionized by passing through a Direct-QTM sys-
tem (Millipore, Bedford, MA,  USA).

2.1.2. RP-LC–MS/MS conditions
Samples were analyzed on the Finnigan LC-UV-MS/MS LTQ lin-

ear ion trap MS  system with ESI ion source (Thermo Finnigan, San
Jose, CA, USA). The instrument was controlled by Thermo Xcalibur
software 1.4. The chromatographic separation of the peptides mix-
tures was  achieved using the XTerra MS  C18 (2.1 × 100 mm,  3.5 �m)
column (Waters, Milford, MA,  USA) at the flow rate of 200 �L/min
and the linear 90 min  gradient time, from 0% to 60% of solvent
B,. The mobile phases: solvent A – 0.1% aqueous solution of TFA,
and solvent B – 0.1% TFA in MS-grade acetonitrile (Sigma–Aldrich,
Steinheim, Germany), were mixed on-line. The mass spectrometer
was operated in the positive ion mode using the following constant
instrumental conditions: source voltage 4.62 kV, capillary voltage
40.97 V and capillary temperature 219.96 ◦C. The collision-induced
dissociation was used to generate MS/MS  spectra in the linear ion
trap. It was  performed with an isolation width of 3 Da (m/z) and
the activation amplitude of 35% of ejection RF amplitude, which
corresponds to 1.58 V.

2.1.3. Protein identification
Upon acquiring the MS/MS  spectra, they were automatically

searched against the protein database (*fasta, downloaded from
UniProtKB) with the use of the Sequest Algorithm, included in
Bioworks 3.0 (Thermo Finningan, San Jose, CA, USA). Washburn
et al. [30] filtering criteria: Xcorr [5] values of at least 1.9, 2.2
and 3.75, for +1, +2 and +3 charged tryptic peptides, respectively,
and �Cn [5] values above 0.08 were applied in peptide identifica-
tion. Experimental retention times (tR,exp) of the identified peptides
were defined at peak intensity maximum. Therefore, 185 peptides
originating from (1) eight model proteins, (2) B. subtilis proteome,
and 95 peptides originating from (3) human epithelial HeLa cells
proteomes were used for QSRR model development and validation.

2.2. Model development

In order to calculate a set of descriptors for QSRR modeling,
molecular structures of 280 peptides were modeled using the pow-
erful sequence editor in HyperChem Professional 8 (Hypercube
Inc., Gainesville, Florida, USA) software. Modeled structures were
solvated in a water box of a defined length. Subsequently, they
were optimized using the Molecular Mechanics [31] method with
CHARMM (BIO+) force field [32]. and Polak–Ribière conjugate gra-
dient algorithm [33] employed until the root mean square gradient
(RMS) value of 0.1 kcal mol−1 Å−1 was  reached. Final structures
were used as input into Dragon 6.0 (Talete, Milano, Italy) soft-
ware, and 4885 descriptors were calculated. Preliminary variable
selection was performed by removing descriptors with a relative
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