ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

Short communication

Isolation and identification of a new sildenafil analogue adulterated in energy drink: Propoxyphenyl sildenafil

Mehmet Alp, Maksut Coşkun, Hakan Göker*

Central Instrumental Analysis II Laboratory, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey

ARTICLE INFO

Article history:
Received 12 August 2012
Received in revised form
20 September 2012
Accepted 22 September 2012
Available online 12 October 2012

Keywords: Sildenafil analogues Propoxyphenyl sildenafil Homosildenafil Adulterants PDE-5 inhibitors

ABSTRACT

A new sildenafil analogue was found to be added illegally to a energy drink marketed for the enhancement of sexual function. The structure was determined as 1-[4-propoxy-3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)phenylsulfonyl]-4-methylpiperazine. Owing to the inclusion of one more methyl group to sildenafil (on C-21), the detected compound was called "propoxyphenyl sildenafil". The sample was purified with column chromatography. The UV, IR, LC/MS (ESI) and completely assigned NMR data of propoxyphenyl sildenafil is reported. Having compared the structure with sildenafil, the results showed that the 2-ethoxy group (at the position on C-19) has been replaced by propoxy group.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Synthetic phosphodiesterase-5 (PDE-5) inhibitors, such as Sildenafil citrate (Viagra®, Pfizer), Vardenafil hydrochloride (Levitra®, Bayer), and Tadalafil (Cialis®, Lilly) are widely used for the treatment of erectile dysfunction (ED) [1,2]. However, a number of important adverse effects of these approved drugs have been reported [1], such as headache, flushing, cardiovascular disorders [3], visual disturbances [4,5], sudden hearing loss [6]. It is well known that, food supplement are suitable vehicles for adulteration with some drug substance or undeclared synthetic chemical compounds [1,7]. Some herbal products advertised as "all natural", in contrast had been found to contain synthetic PDE-5 inhibitors [7,8]. Legal PDE-5 inhibitors or their unapproved new analogues as adulterants are frequently detected in dietary herbal supplements, for enhancing sexual men performance. Recently, the use of new modified derivatives is increasing steadily and the current number of analogues is estimated to be at least 50 [1,7]. At this point, the question is: why do the manufacturers use these structure-modified new compounds for their production? The answer is: it is difficult to detect these modified adulterants by means of ordinary laboratory inspection system using reference standards, without advanced instruments like nuclear magnetic resonance spectroscopy (NMR) [1,9-11]. NMR is the only analytical technique that provides full structural information of novel compounds [10]. Briefly, these

manufacturers have only one intention: escaping from detection. On the other hand, consumers are at risk if dietary supplements are adulterated with these new analogues, because of their unknown safety and toxicity profile. Hence, it is very important to detect the presence of known or unknown synthetic PDE-5 inhibitors, in health supplements. In our central research laboratory, we are analysing these commercially available dietary supplements which have been sent by the Ministry of Food, Agriculture and Livestock, to check whether they possess these kind of analogues [2,12]. In the present study, a new sildenafil analogue (1) was isolated from an energy drink and its structure was determined using NMR, MS and IR (Fig. 1).

2. Materials and methods

2.1. Equipments

Uncorrected melting points were measured on a Büchi B-540 capillary melting point apparatus. $^1\mathrm{H}~(400\,\mathrm{MHz})$ and $^{13}\mathrm{C}~(100\,\mathrm{MHz})$ NMR spectra were recorded employing a VARIAN MERCURY 400 MHz FT spectrometer, with CDCl3 as solvent. Chemical shifts (δ) are in ppm relative to TMS. The LC/MS spectra were taken on a Waters Micromass ZQ connected with Waters Alliance HPLC, using ESI(+) method, with C-18 column. Elemental analyses were performed by Leco CHNS-932. The infrared spectrum was recorded in the 600–3600 cm $^{-1}$ range using a Perkin-Elmer Spectrum 100 FT-IR spectrometer and KBr pellets. The UV spectrum was recorded with Shimadzu UV-1601 UV/Vis spectrophotometer.

^{*} Corresponding author. Tel.: +90 3122033013; fax: +90 312 2230562. E-mail address: goker@ankara.edu.tr (H. Göker).

Fig. 1. Structures of homosildenafil (A) and propoxyphenyl sildenafil (Compound 1) (B).

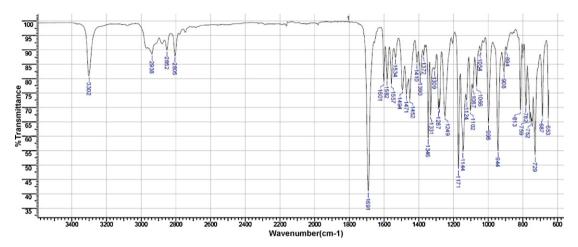


Fig. 2. IR spectrum of propoxyphenyl sildenafil.

2.2. Extraction and isolation

The contents of two aluminium cans (each containing 150 ml) of energy drink samples were extracted with the mixture of CH_2Cl_2 —MeOH (95:5), evaporated and directly transferred to an open column with silica gel 60 (0.04–0.063 mm) and eluted with CH_2Cl_2 —MeOH (100:1.5). Fractions were collected and analysed by TLC. All fractions containing the target compound were collected and the solvent was evaporated and the residue crystallised from MeOH. 0.033 g of white powder was obtained, m.p. 160–161 °C. Analysis calculated for $C_{23}H_{32}N_6O_4S$: C 56.54, H 6.60, N 17.2, S 6.56; found: C 56.56, H 6.33, N 16.9, S 6.45.

2.3. NMR analysis

Unknown compound (1) was dissolved in CDCl₃ and subjected to 1D and 2D NMR spectroscopic analysis (¹H, ¹³C, DEPT, Homo-COSY, HSQC and HMBC) at room temperature.

2.4. LC/MS analysis

LC-MS coupled with positive (ESI+) Electro Spray method was used to determine its molecular weight. The HPLC of LC/MS was carried out on a column XTerra® MS C-18 (4.6 mm \times 250 mm, 5 μ m) with acetonitrile:methanol: 0.01 M ammonium acetate in water (65:20:15) as the mobile phase. The flow rate was 1.0 ml/min, the injection volume was 10 μ l and the running time 20 min. The eluate was monitored by a photo-diode array detector at 290 nm. The analytical condition of mass was as follows: capillary voltage: 3.71 kV, cone voltage: 75 V, source temperature: 100 °C, desolvation temperature: 350 °C. Compound (1) showed its [M+H]+ ion at m/z 489.2 which is corresponding to the molecular formula $C_{23}H_{32}N_6O_4S$ (488).

3. Results and discussion

The molecular weight of homosildenafil is 488, that of the unknown compound is the same, however its HPLC retention time was different: it was between those of sildenafil and homosildenafil. Therefore, the unknown compound isolated from commercially available energy drink is considered to be one of the new sildenafil analogues. Compound (1) was purified using column chromatographic techniques as well as crystallisation from energy drink.

Compound **(1)** exhibited two UV maxima at 215 and 292 nm in MeOH. The IR spectrum (KBr) showed absorption bands with the characteristics of an amine at $3302\,\mathrm{cm}^{-1}$, C–H stretching at 2938 and $2852\,\mathrm{cm}^{-1}$, an α,β -unsaturated lactam at $1691\,\mathrm{cm}^{-1}$, an aromatic ring at $1558\,\mathrm{cm}^{-1}$, asymmetric sulfonamide at $1346\,\mathrm{cm}^{-1}$ and symmetric sulfonamide at $1171\,\mathrm{cm}^{-1}$ (Fig. 2).

The mass spectra and fragmentation product ions of sildenafil and propoxy sildenafil are shown in Fig. 3 and Scheme 1, respectively. Both compounds exhibit similar fragmentation with the initial loss of the piperazine containing portion of the molecule. Evidence of this loss can be deduced from the product ions m/z 311 for sildenafil and m/z 325 (due to inclusion of one methylene) for propoxy sildenafil. The product ions, with m/z 299, 283 and 99 are common, because of their similar structure.

Table 1 shows the ^1H NMR, ^{13}C NMR, DEPT, $^1\text{H}-^1\text{H}-\text{COSY}$, HSQC and HMBC spectral data of compound (1). The spectroscopic numbering and the structure of the unknown compound (1) are shown in Fig. 1. The ^1H NMR spectrum showed characteristics of amide proton at δ_{H} 10.86 (1H, br.s). While the splitting pattern of the protons of C-20 is a quartet in homosildenafil [11–14] due to the neighbourhood to CH₃ group (C-21), corresponding protons of this unknown compound (1) is observed as a triplet at δ_{H} 4.25 ppm (2H, t, J = 7.6 Hz). This means, that there is one more carbon atom

Download English Version:

https://daneshyari.com/en/article/1221568

Download Persian Version:

https://daneshyari.com/article/1221568

Daneshyari.com