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Abstract

Partial differential equations (p.d.e) equipped with spatial derivatives of fractional order capture anomalous trans-
port behaviors observed in diverse fields of Science. A number of numerical methods approximate their solutions in
dimension one. Focusing our effort on such p.d.e. in higher dimension with Dirichlet boundary conditions, we present
an approximation based on Lattice Boltzmann Method with Bhatnagar-Gross-Krook (BGK) or Multiple-Relaxation-
Time (MRT) collision operators. First, an equilibrium distribution function is defined for simulating space-fractional
diffusion equations in dimensions 2 and 3. Then, we check the accuracy of the solutions by comparing with i) ran-
dom walks derived from stable Lévy motion, and ii) exact solutions. Because of its additional freedom degrees, the
MRT collision operator provides accurate approximations to space-fractional advection-diffusion equations, even in
the cases which the BGK fails to represent because of anisotropic diffusion tensor or of flow rate destabilizing the
BGK LBM scheme.
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1. Introduction

Among diverse non-Fickian transport behaviors observed in all fields of Science, heavy tailed spatial concen-
tration profiles recorded on chemical species, living cells or organisms, suggest displacements more rapid than the
classical Advection Diffusion Equation (ADE) predicts [1–5]. Such super-dispersive phenomena include plumes that
lack finite second moment, or whose mean and peak do not coincide (see [6]). Possible explanations may be large
scale heterogeneity or multiple coupling between many simple sub-systems which separately would not exhibit such
abnormalities. Similar strange behaviors are observed often enough to suggest exploring alternative models as frac-
tional partial differential equations. It turns out that [6–10] many tracer tests in rivers and underground porous media
are accurately represented by the more general conservation equation

∂C
∂t

(x; t)+∇∇∇ � (uC)(x; t) =∇∇∇ �D(x)FFF αααpppggg(C)+Sc(x; t): (1)

It models mass spreading for passive solute at concentration C in incompressible fluid flowing at average flow rate
u = ∑d

µ=1 uµbµ super-imposed to small scale velocity field whose complexity causes non-Fickian dispersive flux

�DFFF αααpppggg(C). The space variable x belongs to some domain Ω of Rd , and is described in the orthonormal basis
fbµ; for µ = 1; :::; dg of Rd by its coordinates noted xµ: greek subscripts refer to spatial coordinates. Moreover Sc is a
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