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a b s t r a c t

We present a new algorithm for general Boolean matrix factorization. The algorithm is
based on two key ideas. First, it utilizes formal concepts of the factorized matrix as crucial
components of constructed factors. Second, it performs steps back during the construction
of factors to see if some of the already constructed factors may be improved or even
eliminated in view of the subsequently added factors. The second idea is inspired by
8M—an old, previously incompletely described and virtually unknown factorization algo-
rithm, which we analyze and describe in detail. We provide experimental evaluation of the
new algorithm and compare it to 8M and two other well-known algorithms. The results
demonstrate that our algorithm outperforms these algorithms in terms of quality of the
decompositions as well in its robustness with respect to small changes in data.

© 2018 Elsevier B.V. All rights reserved.

1. Problem description

1.1. Problem in brief

Research in Boolean matrix factorization (BMF), or Boolean matrix decomposition, has resulted in various new methods
of analysis and processing of data and has also contributed to our understanding of Boolean (binary, yes/no) data as regards
foundational aspects. While the developments of practical methods and theoretical foundations are clearly connected,
most of the current BMF methods use limited theoretical insight. Building upon our previous research [4], we developed
in our recent paper [3] an efficient BMF algorithm utilizing a better understanding of the geometry of BMF, which we
also developed in [3]. The understanding, provided in terms of Galois connections, concept lattices, and other structures
underlying formal concept analysis (FCA [11]), as well as the algorithm, are primarily developed for exact Boolean matrix
factorizations and employ formal concepts as factors. As such, the constructed factorizations are limited (in that they never
commit overcovering, see below). Such limitation presents no restriction when exact factorizations are desired. Moreover,
even though computing restricted type of decompositions, the algorithm outperforms the other BMF algorithms also when
approximate factorizations are needed with a prescribed precision [3]. Nevertheless, there are situations in which general
factorizations are desirable, hence the limitation described above may indeed prove restrictive. In the present paper, we
extend our previous approach to BMF and develop a new algorithm that computes general factorizations.

1.2. Basic notions and rationale for computing general BMFs

We denote by I an n × m Boolean matrix and interpret primarily as an object–attribute incidence matrix (hence the
symbol I). That is, the entry Iij corresponding to the row i and the column j is either 1 or 0, indicating that the object i does
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or does not have the attribute j, respectively. The set of all n × m Boolean matrices is denoted {0, 1}n×m. The ith row and
jth column vector of I is denoted by Ii_ and I_j, respectively. In BMF, one generally attempts to find for a given I ∈ {0, 1}n×m
matrices A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for which

I (approximately) equals A ◦ B, (1)

where ◦ is the Boolean matrix product, i.e. (A ◦ B)ij = maxkl=1 min(Ail, Blj). A decomposition of I into A ◦ Bmay be interpreted
as a discovery of k factors that exactly or approximately explain the data: Interpreting I , A, and B as object–attribute, object–
factor, and factor–attribute matrices, model (1) reads: The object i has the attribute j if and only if there exists factor l such
that l applies to i and j is one of the particular manifestations of l. The least k for which an exact decomposition I = A ◦ B
exists is called the Boolean rank (or Schein rank) of I .

The approximate equality in (1) is commonly assessed in BMF by means of the L1-norm (Hamming weight in case of
Boolean matrices) ∥ · ∥ and the corresponding metric E(·, ·), defined for C,D ∈ {0, 1}n×m by

∥C∥ =
m,n∑
i,j=1

|Cij| and E(C,D) = ∥C − D∥ =
m,n∑
i,j=1

|Cij − Dij|. (2)

The following particular variants of the BMF problem, relevant to this paper, are considered in the literature.

– Discrete Basis Problem (DBP, [21]):
Given I ∈ {0, 1}n×m and a positive integer k, find A ∈ {0, 1}n×k and B ∈ {0, 1}k×m that minimize ∥I − A ◦ B∥.

– Approximate Factorization Problem (AFP, [4]):
Given I and prescribed error ε ≥ 0, find A ∈ {0, 1}n×k and B ∈ {0, 1}k×m with k as small as possible such that
∥I − A ◦ B∥ ≤ ε.

These problems reflect two important views of BMF: DBP emphasizes the importance of the first few (presumably most
important) factors; AFP emphasizes the need to account for (and thus to explain) a prescribed portion of data.

A useful view of BMF is provided in terms of rectangles [4,3]: J ∈ {0, 1}n×m is called rectangular (a rectangle, for short) if
J = C ◦D for some C ∈ {0, 1}n×1 (column) and D ∈ {0, 1}1×m (row); this implies that upon suitable permutations of columns
and rows, the 1s in J form a rectangular area. We say that J (or, the pair ⟨C,D⟩ for which J = C ◦ D) covers ⟨i, j⟩ if Jij = 1
(equivalently, Ci = 1 and Dj = 1). For matrices J1 and J2, we put

J1 ≤ J2 (J1 is contained in J2) iff (J1)ij ≤ (J2)ij for every i, j. (3)

The following observation shows that a Boolean matrix product may be considered as a ∨-superposition of (or a coverage
by) rectangles (see e.g. [3]):

Observation 1. The following conditions are equivalent for any I ∈ {0, 1}n×m.

(a) I = A ◦ B for some A ∈ {0, 1}n×k and B ∈ {0, 1}k×m.
(b) There exist rectangles J1, . . . , Jk ∈ {0, 1}n×m such that I = J1 ∨ · · · ∨ Jk, i.e. Iij = maxkl=1(Jl)ij.
(c) There exist rectangles J1, . . . , Jk ∈ {0, 1}n×m such that Iij = 1 if and only if ⟨i, j⟩ is covered by some Jl.

In particular, ifA andB are thematrices fromObservation 1(a), then onemayput Jl = A_l◦Bl_ (l = 1, . . . , k), i.e. Jl is the product
of the lth columnofA and the lth rowof B, to obtain the rectangles in (b) and (c). Conversely, if J1 = C1◦D1, . . . , Jk = Ck◦Dk are
the rectangles in (b) or (c) then thematrices A and B inwhich the lth column and lth row are Cl andDl, respectively, satisfy (a).
As a result, computing an exact factorization of I with a small number k of factors is equivalent to computing k rectangles
contained in I that cover all the 1s in I . Since maximal rectangles in I correspond to formal concepts of I [11], the above
observation led to the employment of formal concepts as factors in [4,3]. Clearly, one may utilize rectangles in I to cover not
necessarily all 1s in I and thus to solve AFP. Even though such approach to AFP, as demonstrated by the algorithms in [4,3],
is considerably successful, the resulting approximate factorizations I ≈ A ◦ B, which are called from-below approximations of
I in [3], are restricted: While it may happen that Iij = 1 and (A ◦ B)ij = 0 (undercovering), it never happens that Iij = 0 and
(A ◦ B)ij = 1 (overcovering).

That the lack of possible overcovering may be severely limiting is apparent from the following examples. Consider first
the matrices I in Fig. 1a and J in Fig. 1b. Let I represent the observed data. One clearly recognizes three rectangles in I , the
union of which forms the gray area, even though some of the entries inside the area contain 0 rather than 1. A natural view of
I is that it results from the true data, represented by J , due to error. For instance, there might be insufficient evidence for the
presence of some attributes on some objects, i.e. for the presence of 1s in certain entries, which is a plausible explanation of
this kind of situation. From this viewpoint, one is interested in discovering from the observed data I the three factors behind
the true data J , i.e. in view of the above observation in discovering from I the 10× 3 and 3× 10 matrices A and B for which
A ◦ B = J . But even if I represented true data, one may be interested in the decomposition into the above A and B because it
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