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The rapid development of mass spectrometry (MS) technologies has solidified shotgun proteomics as the most
powerful analytical platform for large-scale proteome interrogation. The ability to map and determine differen-
tial expression profiles of the entire proteome is the ultimate goal of shotgun proteomics. Label-free quantitation
has proven to be a valid approach for discovery shotgun proteomics, especiallywhen sample is limited. Label-free
spectral count quantitation is an approach analogous to RNA sequencing whereby count data is used to deter-
mine differential expression. Herewe show that statistical approaches developed to evaluate differential expres-
sion in RNA sequencing experiments can be applied to detect differential protein expression in label-free
discovery proteomics. This approach, termed MultiSpec, utilizes open-source statistical platforms; namely
edgeR, DESeq and baySeq, to statistically select protein candidates for further investigation. Furthermore, to re-
move bias associated with a single statistical approach a single ranked list of differentially expressed proteins
is assembled by comparing edgeR and DESeq q-values directly with the false discovery rate (FDR) calculated
by baySeq. This statistical approach is then extended when applied to spectral count data derived frommultiple
proteomic pipelines. The individual statistical results frommultiple proteomic pipelines are integrated and cross-
validated by means of collapsing protein groups.
Biological significance: Spectral count data from shotgun proteomics experiments is semi-quantitative and semi-
random, yet a robust way to estimate protein concentration. Tag-count approaches are routinely used to analyze
RNA sequencing data sets. This approach, termed MultiSpec, utilizes multiple tag-count based statistical tests to
determine differential protein expression from spectral counts. The statistical results from these tag-count ap-
proaches are combined in order to reach a final MultiSpec q-value to re-rank protein candidates. This re-ranking
procedure is completed to remove bias associated with a single approach in order to better understand the true
proteomic differences driving the biology in question. The MultiSpec approach can be extended tomultiple pro-
teomic pipelines. In such an instance, MultiSpec statistical results are integrated by collapsing protein groups
across proteomic pipelines to provide a single ranked list of differentially expressed proteins. This integration
mechanism is seamlessly integratedwith the statistical analysis and provides themeans to cross-validate protein
inferences from multiple proteomic pipelines.
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1. Introduction

Mass spectrometry based proteomics is the most diverse platform
for protein identification and characterization, in part due to advances
in protein isolation techniques, chromatographic separation options

and a diverse array of ionization, fragmentation and data acquisition
techniques [1]. In shotgun proteomics mere protein identification is
usually not sufficient to understand the complexity of biological phe-
nomena. Label-free spectral counting is a robust semi-quantitative tech-
nique directly applicable and widely used in shotgun proteomics [2–7].
Spectral count data from shotgun proteomics experiments are heavily
influenced by chromatographic separations and sample complexity, as
well as the choice of analytical instrumentation and the implementation
of dynamic exclusion parameters, and therefore should be considered
semi-quantitative and semi-random [8–11]. Regardless of bias associat-
ed with collection of mass spectrometry peptide data, ultimately pro-
tein identification must be inferred from the generated peptide
spectra with the use of database search engines [12–19]. The next
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challenge is determining differential protein expression between co-
horts of complex proteomes and prioritizing these protein candidates
for validation.

In discovery based proteomic experiments the number of samples
collected is often small (b10). In these instances it is not possible to
prove that the counts fit a Gaussian (normal) distribution. Powerful sta-
tistical alternatives have been routinely applied in the proteomics com-
munity to performdifferential expression analysis of spectral count data
[20–25]. Models based on the Poisson distribution have historically
been applied to model count data. The main limitation to the Poisson
distribution is that it has only one model parameter and cannot effec-
tivelymodel under- or over-dispersed data.When there is not sufficient
data to confirm that the sample variances are equal, quasi-likelihood or
generalized linear mixed effects modeling approaches can be used [20,
22]. Another alternative to the Poisson distribution is the negative bino-
mial distribution. The approaches described herein leverage the nega-
tive binomial distribution to model over-dispersed count data through
determining the unique mean-variance relationship [26–31]. Very sim-
ilar to spectral count data from shotgun proteomics, RNA sequencing
data is over-dispersed, multivariate in nature, and often limited by
few biological replicates. This has encouraged the development of so-
called tag-count based statistical approaches to determine differential
expression. These tag-count based statistical approaches are powerful
alternatives to traditional parametric and non-parametric tests when
analyzing RNA sequencing data [32–36].

The approach described here, termed MultiSpec, employs a multi-
model tag-count based statistical approach. Individual statistical results
are combined and re-ranked using a median q-value/FDR approach.
This holistic representation of differential expression can be extended
to the analysis of spectral count data obtained frommultiple proteomic
pipelines. MultiSpec is built upon open-source statistical platforms,
namely edgeR, DESeq and baySeq and is executable in the R program-
ming language (v 3.0) [37]. The highlighted analysis (EAE/Sham) is a
product of the multi-model statistical analyses of spectral count results
derived from three proteomic pipelines (MassMatrix, MyriMatch and
Proteome Discoverer). The three independent statistical analyses and
integration of the results across proteomic pipelines utilized a maxi-
mum of 242 MB of real memory and was complete in 317 s. Files con-
taining the raw spectral counts from each proteomic pipeline, detailed
descriptions of the figures generated by MultiSpec and corresponding
result tables are available in Supplemental Material 12. The authors an-
ticipate continuous advancement of thismodular R script. Therefore, the
most current version is available from the authors upon request. The
version of the R script used in thismanuscript is available in Supplemen-
tal Material 13.

2. Materials and methods

2.1. Experimental data sets

Two publicly available and previously described datasets were used
to illustrate the utility of label-free spectral counting and highlight the
statistical capabilities of MultiSpec.

First the dataset described by Chen et al. was used to validate that
spectral counts generated by each proteomic pipeline is an accept-
able approach to estimate fold changes [38]. In addition, this dataset
was also utilized to evaluate the potential influence of TMM normal-
ization on estimating fold changes. This dataset consisted of 36
human proteins spiked into a Pyrococcus furiosus (Pfu) lysate. Each
cassette consisted of six human proteins from the Universal Prote-
ome Standard from Sigma Aldrich (UPS). Each cassette was spiked
into a Pfu lysate at different ratios: 1:1, 4:3, 3:5, 2:1, 4:1 and 1:8 as
described in Supplemental Table 1. For the purpose of this study,
these spike ratios were assumed to be correct. Five technical repli-
cates were produced for each condition (UPSA or UPSB) using a 95-
min gradient and spectra collected with an LTQ-Orbitrap Velos.

This dataset consisting of 10 RAW files was analyzed by three sepa-
rate label-free proteomic pipelines (MassMatrix, MyriMatch and
Proteome Discoverer) as described below. Data were searched
against a custom FASTA database containing 2152 forward protein
sequences: 36 Universal Proteome Standard (UPS) protein se-
quences, 71 common contaminant proteins and the Pfu UniProt da-
tabase (08/20/2012) [38]. This custom database was concatenated
to a reverse decoy database to estimate peptide and protein false dis-
covery rates (FDR). The common constraints applied to database
searches included: (1) limiting the search to b/y ions, (2) in-silico se-
quence digestion after Lys and Arg except those proceeding a Pro, (3)
fixed modification due to carbamidomethylation of Cys
(+57.0215 Da), (4) variable modifications for the formation of Glu
to pyro-Glu (−18.011) and for oxidation of Met (+15.9949) and
(5) precursor mass and fragment mass tolerances were set at
10 ppm and 0.6 Da, respectively. The full set of search parameters
is provided in Supplemental Table 2.

Second, to highlight the ability for MultiSpec to identify unknown
proteomic changes a dataset from a murine model of multiple sclerosis
(EAE/Sham) was obtained from the PRoteomics IDEntifications (PRIDE)
data repository [39]. The EAE/Sham dataset consisted of 18 RAW files
from six biological replicates (three EAE and three Sham surgery) each
analyzed in technical triplicate. The overall workflow of the data analy-
sis is outlined in Fig. 2. The EAE/Sham data were analyzed by three sep-
arate label-free proteomic pipelines (MassMatrix, MyriMatch and
ProteomeDiscoverer), against the complete, reviewed, forward/reverse
UniProt murine database (May 2014), containing 16,677 forward se-
quences. Like the Pfu dataset, the search parameters were harmonized
across search engines (Supplemental Table 2).

2.2. Label-free proteomic pipelines

Leveragingmultiple search engines has been shown to increase pep-
tide and protein identifications [40–43]. In this approach three proteo-
mic pipelines (MassMatrix, MyriMatch and Proteome Discoverer)
each consisting of unique peptide spectrum match (PSM) filtering
criteria, search engine and protein grouping mechanism were used to
cross validate differential protein expression. The complete set of pa-
rameters for each proteomic pipeline is outlined Supplemental Table 2.

2.2.1. MassMatrix [12,44–46]
RAWdatawas converted tomzXML data format usingMSConvert in

ProteoWizard (v 3.0.7494) [47,48]. In the case of the EAE/Sham dataset,
the mzXML files for the three technical replicates were merged to rep-
resent a single biological replicate. An MS spectra was mapped to not
more than one peptide sequence. Peptides with a p-value less than
0.05 were retained andmapped to either forward or reverse protein se-
quences. Decoy and non-decoy protein identifications and their associ-
ated spectral counts were parsed and recombined using an in-house
Python script as described below (Supplemental Material 3). In cases
where a homologous protein group was identified, it was represented
by a comma separated list of unique identifiers (UniProtIDs). The max-
imum protein score of the proteins in a homologous protein group was
used to represent the protein group. The final harmonized protein list
was ranked by protein score and filtered where each valid protein ID
contained at least two unique peptides. The FDR was estimated using
a target-decoy strategy and all proteinswere retained until the incorpo-
ration of protein decoy exceeded the 5% protein FDR [49]. To account for
the missing value problem across multiple samples, the homologous
protein groups were split across search results based on their protein
ranking and grouping in the database search. The regrouping used a bi-
partite approach similar to that described by Zhang et al. but at the pro-
tein group level rather than the peptide level [16]. A table of the
database search results and protein groupings for each sample was sup-
plied as an input. The final output was a combined spreadsheet of spec-
tral counts with a harmonized grouping of proteins across all samples. If
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