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Targeted release and fractionation reveal glucuronylated and sulphated
N- and O-glycans in larvae of dipteran insects
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reversed-phase or hydrophilic interaction HPLC fractionation followed by MALDI-TOF MS or permethylation
followed by NSI-MS), we examined the N-glycans of both A. gambiae and A. aegypti larvae and demonstrate
the presence of a range of paucimannosidic glycans as well as bi- and tri-antennary glycans, some of which are
modified with fucose or with sulphate or glucuronic acid residues; the latter anionic modifications were also
found on N-glycans of larvae from another dipteran species (Drosophila melanogaster). The sulphate groups are
attached primarily to core a-mannose residues (especially the a1,6-linked mannose), whereas the glucuronic
acid residues are linked to non-reducing 31,3-galactose. Also, O-glycans were found to possess glucuronic acid
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Glycans and sulphate as well as phosphoethanolamine modifications. The presence of sulphated and glucuronylated N-
Oligosaccharides glycans is a novel feature in dipteran glycomes; these structures have the potential to act as additional anionic
HPLC

glycan ligands involved in parasite interactions with the vector host.
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Mosquitoes are important vectors for a range of human and animal
pathogens, including the malaria parasite Plasmodium [1] and the yel-
low fever, Dengue, Chikungunya and West Nile viruses [2-5]. As glycans
coat both pathogen and host cell surfaces, many interactions between
host and pathogen are glycan-mediated. In the case of malaria, attach-
ment of the parasites to the gut and salivary glands of the mosquito vec-
tor are dependent on chondroitin and heparin sulphates, respectively
[6,7], whereas heparin sulphate is also a ‘receptor’ for Plasmodium spo-
rozoites in the mammalian liver [8]. However, mosquitoes are expected
to have a range of cell surface glycoconjugates other than proteoglycans
and these may also play roles in parasite transmission.

The basic repertoire of N- and O-glycans in insect species is well
known with recent glycomic studies being centred on either the fruit
fly Drosophila melanogaster or on the recombinant proteins expressed
by insect cell lines [9,10]. In general, so-called paucimannosidic N-
glycans (with three or fewer mannose residues) with and without
fucosylation as well as standard oligomannosidic N-glycans dominate,
whereas the O-glycomes primarily consist of mono- and disaccharides.
Nevertheless, studies over the past ten years have shown that low levels
of more complex N- and O-glycans can be found in insect tissues.
Triantennary and sialylated N-glycans have been found [11], whereas
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glucuronylation is a feature of both O-linked ‘mucin-type’ and ‘O-fucose’
oligosaccharides [12,13]. Thus, it is apparent that procedures for
analysing glycomes of insects should be ‘open’ to the possibility of find-
ing more complicated neutral and anionic glycans.

We have developed different schemes suitable for analysing an-
ionic glycans from either protist or insect sources [14,15]. In the for-
mer case, solid-phase extraction to separate neutral from anionic
glycans was found to be important to detect sulphated N-glycans
from Dictyostelium by off-line LC-MALDI-TOF MS in their native
state [14], whereas the use of phase extraction after permethylation
enabled detection by NSI-MS of sialylated and glucuronylated gly-
cans from Drosophila as well as sulphated O-glycans from mammali-
an mucins [15,16]. In the present study, both approaches were
employed in the analysis of the N- and O-glycans from the larvae of
two mosquito species, the malaria vector Anopheles gambiae and
the viral vector Aedes aegypti; thereby, we reveal a hitherto unknown
complexity of the glycomes of both species.

1. Experimental procedures
1.1. Biological material

A. gambiae (Keele) were reared and maintained in an environmental
chamber at 27 °C with a relative humidity >80% and a 12 h light/dark
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cycle. Eggs were hatched in distilled water, transferred to plastic
pans and larvae were fed on a slurry of ground cat food (Purina cat
chow). After 5 to 6 days of feeding, L3-L4 instar larvae were collected
by centrifugation and stored at — 80 °C. Aedes aegypti (Rockefeller)
larvae were reared, dependent on the source laboratory either
using a slurry of Vitakraft Premium VITA ‘Flockenfutter fiir alle
Zierfische’ (22 102) or as for A. gambiae. Drosophila larvae were pre-
pared by standard cultivation techniques. In order to determine
whether any of the glycans detected in the mosquito larval samples
originated from the food source, N-glycans were prepared from the
cat food and the fish food and were analysed by NSI-MS and off-
line MALDI-TOF MS respectively; thereby fragmentation patterns
and elution times could be compared in order to check for any poten-
tial contaminating glycans in the larval samples.

1.2. N-glycan purification and MALDI-TOF/TOF MS analysis

Frozen larvae (approximately 1.5-2.0 g wet weight) were boiled in
deionised water for 10 min before grinding in a mortar. Thereafter,
the slurry was made up to a total volume of 10 mL prior to the addition
of formic acid (up to 5% (v/v)) and 1 mg porcine pepsin (Sigma-Al-
drich). After proteolysis, cation exchange and gel filtration chromatog-
raphy were performed as previously described [17] and the N-glycans
released using PNGase F (recombinant; Roche) as well as by subsequent
PNGase A (from almonds; Roche) digestion of remaining glycopeptides.
De-N-glycosylated glycopeptides were gel filtrated and subject to 3-
elimination prior to LC-MS of native O-glycans (see below, see section
1.7). The N-glycans were then subject to nonporous graphitized carbon
(NPGC) chromatography for separation into neutral and anionic frac-
tions [14]. As required, neutral N-glycans were further purified by a
second solid-phase extraction using a Lichroprep RP18 cartridge col-
umn (25-40 um; Merck). Pyridylamination was performed [17,18]
and the fluorescently-labelled N-glycans were fractionated by HPLC
using either an Ascentis® Express RP-Amide column (150 x
4.6 mm, 2.7 um; Supelco) with a gradient of 0.3% methanol per
minute at a flow rate of 0.8 mL/min, or an IonPac AS11 column
(HIAX, Dionex) as described previously [14,19]. The control
pyridylaminated triantennary N-glycan from foetal calf serum (the
major component being fetuin) was purified by RP-HPLC as part of
a previous study [17]. Collected fractions were lyophilized and
reconstituted in water and analysed by MALDI-TOF/TOF MS in posi-
tive and negative ion modes (Bruker Autoflex Speed or Bruker
UltrafleXtreme) with 6-aza-2-thiothymine (ATT) as matrix. The ap-
proximately 5500 MS and MS/MS spectra generated in this study
were initially processed using the manufacturer's software (Bruker
Daltonics FlexAnalysis 3.3.80) and then manually interpreted. Theo-
retical masses were calculated using the software GlycoWorkbench
2.0. The qualitative/semi-quantitative estimation of glycan amounts
(from ‘+++ through ‘trace’) is based on HPLC fluorescent peak
intensities; in case of multiple glycans in an HPLC fraction, a sub-
estimation on the basis of MALDI-TOF MS data was made.

1.3. Exoglycosidase treatments

Further analysis of whole N-glycome pools or of selected HPLC frac-
tions (see the Results section) by MALDI-TOF MS was performed after
treatment overnight with either 3-galactosidase (either Xanthomonas
manihotis 31,3-galactosidase from NEB or recombinant Aspergillus
niger lacA 31,4-galactosidase prepared in-house [20]), a-fucosidases
(bovine kidney from Sigma-Aldrich or almond «1,3-specific from
Prozyme), a-mannosidases (jack bean from Sigma, Xanthomonas a1,2/
3-specific from NEB or Xanthomonas oc1,6-specific from NEB), Escherichia
coli B-glucuronidase (the kind gift of Megazyme; ultrafiltrated to remove
some impurities before use) or 3-hexosaminidase (either jack bean -
hexosaminidase from Sigma, 31,3/4-specific Streptomyces chitinase from
NEB or recombinant Apis mellifera FDL (31,2-N-acetylglucosaminidase;

prepared in-house [21]) in 25 mM ammonium acetate, pH 5.0 (pH 7.0
in the case of B-glucuronidase), at 37 °C overnight (three hours at 30 °C
in the case of FDL, which under the conditions removes specifically the
N-acetylglucosamine linked to the core o:1,3-mannose). Desulphation
was performed by solvolysis as described below; a previously-studied
sulphated N-glycan from Dictyostelium [ 14] was used as a positive control.
Generally, chemically or enzymatically treated glycans were analysed by
MALDI-TOF MS without further purification.

1.4. Glycan permethylation and NSI-MS analysis

Permethylated N- and O-glycans from insect larvae were pre-
pared as described [15]. Frozen larvae were homogenised in ice-
cold 50% (v/v) aqueous methanol and delipidated with chloroform/
methanol/water (4:8:3, v/v/v). Insoluble proteins were precipitated
by centrifugation and the resulting pellet was washed with acetone
to produce a fine protein powder, a portion of which was subject to
trypsinisation. Tryptic peptides were purified on C18 cartridges
(Baker C18) and digested with either PNGase F (Prozyme) or PNGase
A (Calbiochem) prior to another round of C18 chromatography to
separate released N-glycans from residual glycopeptides. Separately,
2-3 mg of protein powder were subject to reductive B-elimination
and released oligosaccharide alditols were purified on a C18 cartridge
column as for the N-glycans. Permethylation of enzymatically- or
chemically-released glycans was performed using iodomethane in a
suspension of sodium hydroxide in dimethyl sulphoxide [22]. The
permethylated glycans were then treated with water/dichloromethane
(DCM; 1:1) to separate non-sulphated and sulphated glycans by
phase partition; the lower organic phase contained non-sulphated
permethylated glycans, whereas the upper aqueous phase contained
sulphated glycans and both pools were subject to solid-phase extraction
on C18 cartridges [16].

1.5. Solvolysis and re-permethylation of glycans with deuterated methy!
iodide (CDsl)

Sulphated glycans were dissolved in 100 pL of 50 mM methanolic
HCl (Supelco) and hydrolyzed for 4 h at room temperature [16,23,24].
After drying under a gentle N, stream, resulting neutral glycans were
re-permethylated with deuterated methyl iodide (CDsl; Sigma-
Aldrich) as described above (section 1.4). The lower organic (DCM)
phase was extensively washed with water and dried under a N, stream
prior to analysis with a nanospray ionisation mass spectrometer (NSI-
MS"; Thermo Fisher Scientific) in positive ion mode [12].

1.6. Glycan analysis by Nanospray lonisation Mass Spectrometry (NSI-
MS")

For MS analysis of non-sulphated glycans in positive ion mode,
permethylated glycans were dissolved in 50 pL of 1 mM sodium hy-
droxide in 50% (v/v) aqueous methanol for subsequent infusion.
For MS analysis of sulphated glycans, permethylated glycans were
reconstituted in 50 pL of methanol/2-propanol/1-propanol/13 mM
aqueous ammonium acetate (16:3:3:2 by volume) for infusion and
analysed in negative ion mode. Samples were infused directly into a lin-
ear ion trap mass spectrometer (LTQ-Orbitrap Discovery; Thermo Fish-
er Scientific) using a nanoelectrospray source at a syringe flow rate of
0.40 to 0.60 pl/min and a capillary temperature set to 210 °C. Automated
acquisition of MS/MS fragmentation (at 35-50% collision energy) was
obtained using the total ion mapping (TIM) functionality of the XCalibur
instrument control software (version 2.0, Thermo Scientific). As de-
scribed by Aoki and Tiemeyer [15], in TIM analysis the m/z range from
200 to 2000 was scanned in successive 2.8 mass unit windows with a
window-to-window overlap of 0.8 mass units. For subsequent manual
MS/MS and MS" analyses by collision-induced dissociation (CID), nor-
malised collision energy of 35% was applied. As internal calibration,
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