Contents lists available at ScienceDirect

Journal of Trace Elements in Medicine and Biology

journal homepage: www.elsevier.com/locate/jtemb

A novel metabolic activation associated with glutathione in dimethylmonothioarsinic acid (DMMTA^V)-induced toxicity obtained from in vitro reaction of DMMTA^V with glutathione

Hidetoshi Kurosawa ^{a,b}, Yasuyo Shimoda ^a, Motofumi Miura ^c, Koichi Kato ^a, Kenzo Yamanaka ^{a,*}, Akihisa Hata ^d, Yuko Yamano ^e, Yoko Endo ^f, Ginji Endo ^g

^a Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, Chiba 274-8555, Japan

^b Criminal Investigation Laboratory, Metropolitan Police Department, Tokyo 100-8929, Japan

^c Laboratory of Molecular Chemistry, Nihon University School of Pharmacy, Chiba 274-8555, Japan

^d Department of Medical Risk Management, Graduate School of Risk and Crisis Management, Chiba Institute of Science, Chiba 288-0025, Japan

^e Department of Hygiene and Preventive Medicine, School of Medicine, Showa University, 142-8555, Japan

^f Research Center for Occupational Poisoning, Kansai Rosai Hospital, Hyogo 660-8511, Japan

^g Department of Preventive Medicine and Environmental Health, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan

ARTICLE INFO

Article history: Received 21 July 2015 Received in revised form 2 September 2015 Accepted 13 October 2015

Keywords:

Dimethylmonothioarsinic acid Dimethylarsinic acid Dimethylarsinous acid Dimethylmercaptoarsine

ABSTRACT

The purpose of the present study was to elucidate the metabolic processing of dimethylmonothioarsinic acid (DMMTA^V), which is a metabolite of inorganic arsenic and has received a great deal of attention recently due to its high toxicity. The metabolites produced from an in vitro reaction with GSH were analyzed by high performance liquid chromatography-time of flight mass spectrometer (HPLC-TOFMS), HPLC with a photodiode array detector (PDA), and also gas chromatography-mass spectrometry (GC-MS) and GC with a flame photometric detector (FPD). The reaction of dimethylarsinic acid (DMA^{VI}) with GSH did not generate DMA^V-SG but did generate dimethylarsinous acid (DMA^{III}) or DMA^{III}-SG. On the contrary, we confirmed that the reaction of DMMTA^V with GSH directly produced the stable complex of DMMTA^V-SG without reduction through a trivalent dimethylated arsenic such as DMA^{III} and DMA^{III}-SG. Furthermore, the present study suggests the production of hydrogen sulfide (H₂S) and dimethylmercaptoarsine (DMA^{III}-SH), a trivalent dimethylated arsenic, as well as DMA^{III} and DMA^{III}-SG in the decomposition process of DMMTA^V-SG. These results indicate that the toxicity of DMMTA^V depends not only on the formation of DMA^{III} but also on at least those of H₂S and DMA^{III}-SH.

© 2015 Elsevier GmbH. All rights reserved.

1. Introduction

In humans and animals, consumption of inorganic arsenic brings about the excretion of dimethylarsinic acid [(CH₃)₂AsO(OH), DMA^V] as a main metabolite of not only inorganic arsenic [1,2] but also, according to recent reports, arsenosugars and arsenolipids derived from seafood [3,4]. Accordingly, DMA^V is not available as an accurate biomarker for exposure of inorganic arsenic unless the subject has a diet history that excludes seafood consumption [5]. On the other hand, the metabolic methylation pathway from inorganic arsenic to DMA^V has long been considered as a detoxification process for inorganic arsenic, at least for its acute toxicity. However, because recent reports have indicated that metabolic intermedi-

* Corresponding author. Fax: +81 47 465 6077. E-mail address: yamanaka.kenzo@nihon-u.ac.jp (K. Yamanaka).

http://dx.doi.org/10.1016/j.jtemb.2015.10.002 0946-672X/© 2015 Elsevier GmbH. All rights reserved. ates of DMA^V, e.g., probably its trivalent form, are highly toxic and that DMA^V has a carcinogenic action in rodents [6,7], the dimethylated arsenic produced in the metabolic methylation as well as inorganic arsenic are now presumed to possibly play an important role in the toxic mechanism of arsenic [8–12]. Therefore, the International Agency for Research on Cancer (IARC) has classified DMA^V into group 2B, a possible carcinogen in humans [13].

The most common view for this is that DMA^V is further reduced metabolically to trivalent dimethylated arsenics such as dimethylarsinous acid [(CH₃)₂AsOH, DMA^{III}] and dimethylarsenicglutathione conjugate [(CH₃)₂As-SG, DMA^{III}-SG] and that these trivalent dimethylated arsenics are considered to be more toxic than DMA^V and to be the ultimate substances responsible for arsenic carcinogenesis [14]. In addition, dimethylated arsenics containing a sulfur atom such as dimethylmonothioarsinic acid [(CH₃)₂AsS(OH), DMMTA^V] and dimethyldithioarsinic acid [(CH₃)₂AsS(SH), DMDTA^V] have been predicted as metabolites from DMA^V [15,16] and DMA^{III} [17–19]. In humans, DMMTA^V has been identified as a trace arsenical excreted in urine after ingestion of arsenosugars [20], in the urine of male Japanese [21], and in the urine of women who reside in an area of arsenic contamination in Bangladesh [22]. In animal studies, DMMTA^V was detected not only in the urine but also in the plasma of arsenite-treated F344 rats [23,24].

DMMTA^V has both genotoxicity and cytotoxicity that have quite similar levels to those of DMA^{III}, while the same is not true for DMDTA^V and trimethylarsine sulfide [(CH₃)₃AsS] [25]. The reason why the toxic potentials of pentavalent DMMTA^V resemble those of trivalent dimethylated arsenic is that the cellular uptake system of DMMTA^V resembles that of DMA^{III}, in fact, both are promptly taken up by cells [17]. Our previous study proposed a novel metabolic interrelation among DMMTA^V, DMA^V and DMA^{III} [26]. DMMTA^V would be converted into DMA^V by receiving enzymatic oxidative desulfuration, possibly by cytochrome P450 (CYP), and then DMA^V formed here is further converted into DMA^{III} with GSH. Ultimately, the toxicity of DMMTA^V has been thought to be caused by metabolic formation of DMA^{III} [27]. The toxic mechanisms of DMMTA^V, however, are not yet fully understood and elucidation of the details is needed. We further revealed that rhodanese, the enzyme that converts CN⁻ to SCN⁻, catalyzed the sulfur atom-addition reaction from DMA^{III} to DMMTA^V [26].

Dimethylmonothioarsenic-glutathione conjugate [(CH₃)₂AsS-SG, DMMTA^V-SG], a conjugate of DMMTA^V with GSH, has been detected in cabbages after exposure to DMA^V [28]. Although it is assumed that pentavalent arsenicals do not directly bind to sulfhydryl groups, a recent report using a theoretical chemistry approach suggested that DMMTAV-SG could be formed under weakly acidic conditions [29]. DMMTA^V-SG generation was more stable in an experiment using cultured cells [30]. Thus, since pentavalent DMMTA^V is likely to form a complex with GSH, the characteristics of the thioarsenicals are different from those of the other pentavalent arsenicals. It would be important to elucidate the relevance of the interaction between DMMTA^V and GSH in the early elucidation of the toxic mechanism of DMMTA^V. In particular, elucidation of the metabolic reduction processing of DMMTA^V-SG is extremely important. We believe that the toxicity of DMMTA^V might be induced not only by its metabolic conversion to DMA^{III} but also to dimethylmercaptoarsine [(CH₃)₂AsSH, DMA^{III}-SH]. The generation of DMA^{III}-SH in theoretical chemistry [29] and in vitro reactions [31,32] has been suggested. On the other hand, a recent study has reported that biosynthesized persulfides (R-SSH) and hydrogen sulphide (H₂S) are highly reactive and have crucial regulatory actions in redox cell signaling [33]. Therefore, it would be important to clarify the toxicological significance of R-AsSH as well as R-SSH.

The toxicity of DMMTA^V was the strongest among dimethylated thioarsenic compounds and further enhanced under the coexistence of GSH [34]. Therefore, to elucidate the reaction mechanism of DMMTA^V and GSH in an in vitro system, we attempt to identify arsenic species formed by the reaction with DMMTA^V with GSH using high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOFMS) and gas chromatographymass spectrometry (GC-MS) analysis, because identification of other intermediate metabolites was indispensable to elucidate a metabolic pathway.

2. Materials and methods

2.1. Caution

The arsenic compounds used in this study are highly toxic. These compounds should be handled with care.

2.2. Reagents and standards

All reagents were of analytical grade. DMA^V was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and recrystallized with methanol twice. L-Glutathione reduced (GSH), carbon disulfide (CS₂), diethyl ether and other general chemicals were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Ammonium acetate was purchased from Sigma-Aldrich (St. Louis, MO, USA). DMMTA^V, DMDTA^V and DMA^{III}-SG were synthesized in our laboratory according to the report methods described by Fricke et al. [35], by Suzuki et al. [36] and by Cullen et al. [37], respectively, and then kept at $-30 \circ$ C under dryness. DMA^{III}-SH was synthesized according to the report by Mandal et al. [31]. In brief, a solution of 1 mol DMA^{III}-SG dissolved in 1.6 mol sulfuric acid was added slowly to a 1.6 mol sodium sulphide water solution under stirring. DMA^{III}-SH generated here was trapped in diethyl ether overlaid on the reaction mixture.

2.3. HPLC-TOFMS analysis

An HPLC system (Nexera LC-30A, Shimadzu, Kyoto, Japan) was used to separate thio-arsenic compounds using a reversed phase polymer column (SunFire C18, 150 mm × 2.1 mm i.d., Waters, Milford, MA, USA) under the following conditions. The mobile phase was a linear gradient between 96% 10 mM ammonium acetate (pH 5.0) with 4% methanol (solvent A) and methanol (solvent B), and programmed for solvent B as follows: 0–5 min, 0%; 5–20 min, $0 \rightarrow 100\%$ and held for 5 min. The flow rate, column temperature, and injection volume were 0.2 mL/min; 40 °C, and 5 μ L, respectively. For detection a TOFMS (maXis 4G, Bruker Daltonics, Bremen, Germany) with ESI positive ion mode was used; ion source temperature, 200 °C; dry nitrogen gas temperature, 200 °C; dry gas flow, 8.0 L/min; capillary voltage, 4000 V; endplate offset, –500 V; and collision energy, 35 eV. The instrument was used to obtain high-resolution spectra in the MS/MS modes.

2.4. HPLC-photodiode array detector (PDA) analysis

An HPLC system (Prominence LC-20A, Shimadzu) equipped with a SunFire column and PDA detector at 190–350 nm (SPD-M20A, Shimadzu, Kyoto, Japan) was used to separate and determine thio-arsenicals and dimethylated arsenicals, under the same conditions as the HPLC system in TOFMS analysis mentioned above. Furthermore, each arsenical was measured by PDA. Briefly, we semi-quantified on the basis of a calibration curve method using 0.01–1 mM concentrations of each arsenic standard, DMMTA^V, DMDTA^V and DMA^{III}-SG. However, since there is no standard DMMTA^V-SG, we calculated the concentration of DMMTA^V-SG produced in the reaction by subtracting the quantitative values of DMMTA^V, DMDTA^V and DMA^{III}-SG, respectively, determined after reaction from the initial concentration of DMMTA^V at the start of the reaction.

There were no arsenic species other than four arsenicals found in the TOFMS and PDA detectors. Also, since HPLC-PDA analysis using the standard DMA^{III}-SG could not detect any arsenic species (DMA^V and DMA^{III}-SG) other than the peak of DMA^{III}-SG, it was quantified by a calibration curve calculated from the peak area of DMA^{III}-SG.

2.5. GC-MS and GC-flame photometric detector (FPD) analysis

A GC-MS system (GCMS-QP2010Plus, Shimadzu) was used to separate and detect DMA^{III}-SH using a fused silica capillary column (HP-5MS, $30 \text{ m} \times 0.25 \text{ mm}$ i.d., 0.25 µm thickness, Agilent Technologies, Inc. Santa Clara, CA, USA) under the following conditions. The column temperature was programmed as follows; at $35 \degree$ C for 4 min, increased $15 \degree$ C/min to $180 \degree$ C and then held at

Download English Version:

https://daneshyari.com/en/article/1226443

Download Persian Version:

https://daneshyari.com/article/1226443

Daneshyari.com