Accepted Manuscript

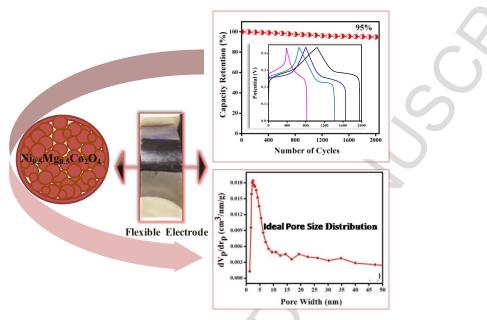
Facile synthesis and electrochemical performance of Mg-substituted $Ni_{1-x}Mg_xCo_2$ O_4 mesoporous nanoflakes for energy storage applications

Meenu Sharma, Shashank Sundriyal, Amrish K. Panwar, Anurag Gaur

PII:	S0013-4686(18)32324-7
DOI:	10.1016/j.electacta.2018.10.085
Reference:	EA 32882
To appear in:	Electrochimica Acta
Received Date:	21 February 2018
Accepted Date:	13 October 2018

Please cite this article as: Meenu Sharma, Shashank Sundriyal, Amrish K. Panwar, Anurag Gaur, Facile synthesis and electrochemical performance of Mg-substituted $Ni_{1-x}Mg_xCo_2O_4$ mesoporous nanoflakes for energy storage applications, *Electrochimica Acta* (2018), doi: 10.1016/j.electacta. 2018.10.085

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


Facile synthesis and electrochemical performance of Mg-substituted Ni_{1-x}Mg_xCo₂O₄ mesoporous nanoflakes for energy storage applications

Meenu Sharma¹, Shashank Sundriyal² Amrish K. Panwar³, Anurag Gaur^{1*}

¹Department of Physics, National Institute of Technology, Kurukshetra 136119, India

²CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh-160030, India ³Department of Applied Physics, Delhi Technological University, New Delhi-110042, India

GRAPHICAL ABSTRACT

ABSTRACT

The specific surface area and pore size of illustrative electrode material is a promising task to achieve better performance of energy storage devices. In this respect, Mg-substituted Ni₁. $_xMg_xCo_2O_4$ (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5) samples were synthesized by cost-effective and facile hydrothermal method. As-prepared samples were evaluated as the electrode material for a battery application. The structural and electrochemical characterization analysis has been carried out systematically. Among different samples, NMC50 (x=0.5) exhibit highest BET surface area of 61 m²g⁻¹ with a suitable pore volume of 0.3029 cm³g⁻¹ and narrow pore size distribution of 2–10 nm. It is verified that the special features of the NMC50 including uniformity of the surface texture and porosity bring significant effect on the electrochemical performances. Consequently, the excellent specific capacity of 302 mAhg⁻¹ is observed for NMC50 sample at a current density of 1.1 Ag⁻¹ and a remarkable cyclic stability of ~95% is maintained over 2000 continuous charge-discharge cycles. The improved electrochemical performance of NMC50, undoubtedly makes it worth as an excellent electrode material for high-performance energy storage applications.

Download English Version:

https://daneshyari.com/en/article/12270429

Download Persian Version:

https://daneshyari.com/article/12270429

Daneshyari.com