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The aim of this paper is to give a brief overview of chemometric techniques based on factorial designs and
response surface methodologies used in the optimization of electroanalytical methods. Chemometric
techniques have several important advantages over one-way optimization for analytical applications,
including a relatively low cost, a reduced number of experiments, and possibilities to evaluate interactions
among variables. These techniques also enable the selection of optimal experimental conditions, helping to
avoid trivial mistakes during optimization. Despite these facts, chemometric techniques have rarely been
applied to electroanalytical data, especially in comparison with their use in spectroscopy. The application of
chemometric methods in electroanalytical chemistry has been mostly used for solving overlapping signals,
multivariate calibration methods, model identification and optimization of analytical procedures. This review
is focused on the latter applications and overviews the role of full or fractional factorial designs (first-order
designs), as well as second-order designs, such as central composite, Doehlert and Box–Behnken designs, for
optimization of electroanalytical methods. A discussion of chemometric-related advantages is also given for
stripping analyses, flow injection systems with amperometric detection, differential pulse voltammetry,
square wave voltammetry and electrochemical sensor preparation.
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1. Introduction

Chemometric tools have been frequently applied to analytical
method optimization problems. Among their advantages is the
reduction in the number of required experiments, resulting in lower
reagent consumption and considerably less laboratory work. Thus, they
are faster to implement and more cost-effective than traditional
univariate approaches. These methods enable the simultaneous study
of several control factors and the development of mathematical models
that permit assessment of the relevance and statistical significance of
factors being studied. They also facilitate the evaluation of interaction
effects between factors. Two types of variables exist in multivariate
designs, including: (i) responses (qualitative or quantitative) and (ii)
factors, which can be firstly screened by full factorial or fractional
factorial designs to get knowledge of those with significant effects on
the analytical response. After determining these significant factors, the
optimum operation conditions are attained by using more complex
experimental designs, such as a Doehlert matrix (DM), Central
Composite designs (CCD) or Box–Behnken designs (BBD) [1–3].

Multivariate statistical methods require that the user establishes
minimum and maximum values for each factor, defining the
experimental domain to be investigated during the optimization
procedure. Combinations of the different factor levels for performing
actual experiments are then determined based on which multivariate
techniques are capitalized.

1.1. First-order model

Designs that be can used in the maximum first-order model are
commonly used in exploratory studies when a large number of factors
need to be considered or screened. Essentially, this method is used in
an attempt to detect factors that exhibit large main effects and to
discard from further study any factors with no noticeable effects. The
crucial assumption here is that all interactions are negligible,
including two-factor interactions. This may not always be realistic,
but as a first approximation this is nevertheless a very valuable
method. Yet, in some cases, it may be helpful to know the two-factor
interactions that each main effect is aliased [4].

1.1.1. Full and fractional factorial design
Full and fractional factorial designs are the most popular first-

order designs owing to their simplicity and relatively low cost. They
are very useful for preliminary studies or in initial optimization steps,
while fractional designs are almost mandatory when the problem
involves a large number of factors. Both allow free interaction with
data, the ability to make comparisons, seek similarities, differences,
trends, etc. They can also be used to determine simple response
surfaces that are linear with respect to all of the investigated factors.
Only the first stage in a multivariate investigation, where a linear
response surface is determined, will be mentioned. For a two-factor
case, the response surface is given by the linear model [5,6] as detailed
below:

ŷ = b0 + b1x1 + b2x2 + b12x1x2 ð1Þ

If the interaction term is negligible, then the response surface is
planar. The more important the interaction term, the greater is the
degree of twisting that the planar response surface experiences.

1.1.2. Plackett–Burman design
Experimental designs of this type exhibit an extremely high degree

of confounding. This is not surprising when one considers that a full
eleven-factor, two-level design would require 2.048 (211) individual
experiments, involving 11 main effects, 55 second-order interactions,
and no fewer than 1.981 further interactions of orders ranging from 3
to 11. Because they are so highly confounded, Plackett–Burman

designs cannot be used to evaluate individual main effects and
interactions between them, although they are of great value in
screening experiments, as mentioned previously. In these experi-
ments, a comparatively large number of factors may have an influence
on the response. Thus, it is of value to distinguish those that have an
effect from those that do not.

Projections of two-level designs can be used to investigate main
effects and interactions of the factors retained, although these cannot
support a fully quadratic model, which require at least three levels.
However, there are also economical three-level designs that can be
used for screening when a second-order fit is desirable. They can be
used as initial building blocks for some small, second-order designs.

1.2. Higher order models

There are many cases where the linear model is not sufficient to
represent the experimental data adequately. In this case, more
experiments can be performed in addition to those of factorial design
and the results can be used to determine a quadratic response surface
[5,6]

ŷ = b0 + b1x1 + b2x2 + b11x
2
1 + b22x

2
2 + b12x1x2 ð2Þ

which has curvature and can be used to predict factor levels that
produce maximum or minimum response values.

After calculating the model coefficients and their standard errors,
an ANOVA is applied to verify the quality of model, that is, the actual
fitting to the data. Random execution of experiments is of concern so
that an accurate estimation of experimental error is obtained. The
regression step does not require user intervention, so it is not
described here, and the reader is referred to basic sources on the
subject to learn how the computer carries out the calculation. The
validation of tentative models using ANOVA is detailed, as this task
requires several decisions on the part of the researcher. These
decisions concern as to which models are adequate to represent the
data and which models should be rejected because they suffer from
significant lack-of-fit to the data [7].

1.2.1. Central composite design
A central composite design (CCD) [8] combines a two-level full or

fractional factorial design with additional points (star points) and at
least one point at the center of the experimental region. This point is
selected to obtain several properties, such as rotatability or orthogon-
ality, in order to fit the quadratic polynomials. The CCD is a better

Fig. 1. Central composite design for two and three factors. The gray dots form the square
or cubic part (the runs of the 22 and 23 factorial). The black dots represent the star
portions.
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