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In this study the effect of thermal treatment on the enhancement of synchronous fluorescence spectroscopic
method for discrimination and quantification of pure extra virgin olive oil (EVOO) samples from EVOO samples
adulterated with refined oil was investigated. Two groups of samples were used. One group was analyzed at
room temperature (25 °C) and the other group was thermally treated in a thermostatic water bath at 75 °C for
8 h, in contact with air andwith light exposure, to favor oxidation. All the sampleswere thenmeasuredwith syn-
chronous fluorescence spectroscopy. Synchronous fluorescence spectra were acquired by varying the wave-
length in the region from 250 to 720 nm at 20 nm wavelength differential interval of excitation and emission.
Pure and adulterated olive oils were discriminated by using partial least-squares discriminant analysis (PLS-
DA). It was found that the best PLS-DA models were those built with the difference spectra (75 °C–25 °C),
which were able to discriminate pure from adulterated oils at a 2% level of adulteration of refined olive oils. Fur-
thermore, PLS regression models were also built to quantify the level of adulteration. Again, the best model was
the one built with the difference spectra, with a prediction error of 3.18% of adulteration.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The detection of olive oil adulterationwith olive oils of lower quality
as well cheaper seed oil with the use of fluorescence spectroscopy is al-
ready well investigated [1,2]. Very early work pointed out good pros-
pects for characterization of edible oils through fluorimetry [3,4].
However molecular fluorescence spectroscopy may not be suitable for
the analysis of complex multi-component samples without prior sepa-
ration, due to severe overlaps of excitation and emission bands. In
such cases, synchronous fluorescence (SyF) could be proved beneficial
as both the excitation and emission monochromators are scanned si-
multaneously in such a manner that a constant wavelength interval is
kept between emission and excitationwavelengths (Δλ). Using suitable
Δλ, SyF reduces spectral overlaps by narrowing spectral bands and sim-
plifies the spectra [5–8]. In this way, spectra selectivity is increased. Re-
cently, a SyF method was described for the classification of edible and
lampante olive oils [9–20].

All types of olive oil (including extra virgin) contain a large
amount of monounsaturated fat. In fact, 70–80% of the total fat
found in olive oil is monounsaturated. This monounsaturated fat
comes from oleic oil, a monounsaturated fatty acid (MUFA). Olive
oil is fairly unique in its high MUFA content. Canola oil comes close
(60–70% MUFA), but many of the other common vegetable oils, in-
cluding sunflower, corn and soybean oils, naturally contain less
than half MUFA than olive oil. In general, monounsaturated fat in-
creases the stability of a vegetable oil in comparison to polyunsatu-
rated fat. This increased stability is related to the chemical
structure of monounsaturated fat. MUFAs have fewer “reactive
spots” than PUFAs (polyunsaturated fatty acids) and it is more diffi-
cult for oxygen radicals to interact with them. However, despite this
lower reactivity, olive oil and other vegetable oils containing a high
amount of MUFAs (like sunflower oil) still have relatively low
smoke points and cannot withstand a large amount of heat. So the
presence of other vegetable oils like sunflower in EVOO as adulter-
ants also changes this stability against temperature [20–25].

So the novelty of this study is to check the effect of thermal treat-
ment and exposure to air to favor detection and discrimination of adul-
teration of extra virgin olive oils from EVOOs adulterated with refined
olive oil, using SyF spectroscopy and PLS-DA and PLS regression.
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2. Materials and methods

2.1. Samples

Eleven extra virgin olive oil (EVOO) samples from PDO Siurana (Tar-
ragona, Catalonia)were used. The EVOOswere purchased at the cooper-
atives to guarantee their traceability and quality. Those eleven EVOO
samples were then adulterated with two types of refined olive oil at
four different percentage levels: 2, 5, 10 and 20%. The total number of
samples used was 99: 11 pure, 44 adulterated with RF1 and 44 adulter-
atedwith RF2. The sampleswere prepared byduplicate. One group of 99
samples was kept at room temperature (25 °C) and the other group of
99 samples was kept in a water bath at 75 °C for 8 h, in contact with
air and with light exposure, to favor oxidation.

2.2. Fluorescence measurements

Fluorescence spectra were acquired with an AMINCO-Bowman Se-
ries 2 Luminescence Spectrometer (Thermo Electron Scientific Instru-
ment Corporation) including the AB2 Series2 software. This is a fully
computer controlled instrument using a double-grating monochroma-
tor for excitation and a single-grating emissionmonochromator. Excita-
tion and emission slit widths were set at 2 nm. The acquisition interval
and integration time were maintained at 1 nm and 60 s, respectively. A
xenon lamp 950W and a quartz cell 1 × 10 × 45 mmwere used. Right-
angle geometry was used for spectral acquisition. SyF spectra were col-
lected by simultaneously scanning the excitation and emission mono-
chromator wavelengths with 20 nm difference of wavelength interval
between excitation and emission wavelengths in the range from 250
to 720 nm.

2.3. Statistical analysis

Microsoft Excel 2010 and The Unscrambler version 9.0 by Camo
were used for statistical analysis. The PLS-DA and PLS regressionmodels
were built at 20 nm difference of wavelength interval between excita-
tion and emission wavelengths. For some models spectral pretreat-
ments, such as baseline correction, and 1st derivative with Savitzky–
Golay smoothing were carried. Leave-one-out cross validation was
used to validate the PLS-DA models. PLS-DA using one partial least
squares (PLS) component provides equivalent classification results to
Euclidean distance to centroids, and by using all nonzero components
to linear discriminant analysis. PLS-DA can provide good insight into
the causes of discrimination via weights and loadings, which gives it a
unique role in exploratory data analysis. For PLS regression all the sam-
ples (both adulteratedwith RF1 and RF2)were joined together and split
into two sets, a training set (70% of the samples) and a test set for vali-
dation (30% of the samples). Leave-one-out cross validationwas used to
validate the PLS regression models built with the training set. The Root
Mean Square Error of Cross Validation (RMSECV) was used as an inter-
nal indicator of the predictive ability of the models. Smaller values of
RMSECV are indicative of a better prediction ability of the model.
RMSECV is calculated using Eq. (1):

RMSECV ¼
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where yi is the measured value (actual % of adulteration), yi is the % of
adulteration predicted by the model, and n is the number of segments
left-out in the cross-validation procedure, which is equal to the number

Fig. 1. SyF spectra at 20 nm difference for EVOO samples, both pure (solid line spectra) and adulterated with 10% RF1(point spectra) at 25 °C.

Fig. 2. SyF spectra at 20 nm difference for EVOO samples, both pure (solid line spectra) and adulterated with 10% RF1 (point spectra) at 75 °C.
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