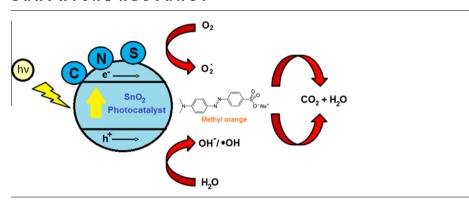
ELSEVIER

Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Synthesis, characterization and photocatalytic applications of N-, S-, and C-doped SnO₂ nanoparticles under ultraviolet (UV) light illumination


Azita Nouri ^{a,*}, Ali Fakhri ^{a,b,*}

- ^a Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
- ^b Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran

HIGHLIGHTS

- Successful synthesis of N-, S-, and Cdoped SnO₂ photocatalyst by precipitation method.
- Doping N-, S-, and C- into SnO₂ nanoparticles increases the absorbance of SnO₂ nanoparticles in UV region.
- Photocatalytic properties of N-, S-, and C-doped SnO₂ powder are studied.

G R A P H I C A L A B S T R A C T

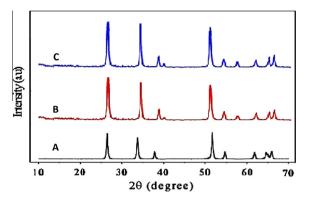
ARTICLE INFO

Article history:
Received 27 February 2014
Received in revised form 5 November 2014
Accepted 23 November 2014
Available online 2 December 2014

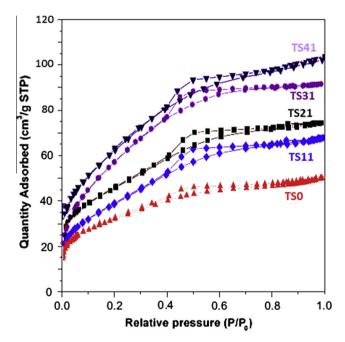
Keywords: Tin dioxide Photocatalyst UV light Methyl orange

ABSTRACT

N-, S-, and C-doped SnO₂ nanoparticles were synthesized via a precipitation method and were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), Transmission Electron Microscope (TEM), UV-vis diffuse reflectance spectral (UV-vis DRS) and Brunauer-Emmett-Teller (BET) techniques. The photocatalytic activities of these SnO₂ samples were investigated with methyl orange as the organic pollutant under UV light illumination. UV-vis spectroscopy demonstrated that dopants N,S,C-species can shift the absorption edge to the near UV and visible light region. N,S,C-SnO₂ nanoparticles achieved the best photocatalytic efficiency and the most optimal doping ratio was 3 (T/S). The degradation of methyl orange by N,S,C-SnO₂ nanoparticles fitted well with the Langmuir-Hinshelwood kinetics model. The results of subsequent experiments indicate that enhanced adsorption ability of light and high separation rate of photo induced charge carriers all play an major role in promotion of photocatalytic activity of N,S,C-SnO₂ nanoparticles.


© 2014 Elsevier B.V. All rights reserved.

Introduction


Environmental pollution has enhanced the general concern nowadays. Especially, treatment of polluted water and air by photocatalysis has been attracting a lot of attention. The discharge of dye effluents from food industries, cosmetic and textile into the aquatic environment is a major environmental concern. Most of the dyes are difficult to degrade owing to its highly toxic and chemically stable nature. Photocatalysis is a technology for the degradation of any pollutants to CO₂ and inorganic constituents using semiconductors as catalysts [1]. Amongst the various metal oxide semiconductors, TiO₂ [2], ZnO [3], WO₃ [4], Fe₂O₃ [5] and Bi₂O₃ [6] are extensively investigated photocatalysts owing to their band gap, chemical stability, and non-toxicity. Tin dioxide (SnO₂) is a wide

^{*} Corresponding authors. Address: Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran. Tel.: +98 912 2005284 (A. Nouri). Address: Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran. Tel./fax: +98 (21)22873079 (A. Fakhri).

E-mail addresses: a.nouri@shahryariau.ac.ir, nouria244@yahoo.com (A. Nouri), ali.fakhri88@yahoo.com (A. Fakhri).

Fig. 1. The XRD patterns of the TS11 samples at different calcination temperatures; (A) $400 \,^{\circ}$ C, (B) $600 \,^{\circ}$ C and (C) $800 \,^{\circ}$ C.

 $\begin{tabular}{ll} \textbf{Fig. 2.} & Adsorption-desorption isotherm plots of TS0, TS11, TS21, TS31, and TS41 samples. \end{tabular}$

band gap (3.6 eV) n-type semiconductor which receives major attention in the fields of solar cells, gas sensors, lithium-ion batteries and light emission [7–12]. However, the broad band gap of SnO₂ prevents its photocatalytic activity under visible light. The photocatalytic activity is also surrounded by the fast recombination of holepairs and photogenerated electron. Whereupon massive efforts have been taken to modify the photocatalytic activity of SnO₂ and make it suitable for receiving source light such as doping with non-metals, metals and coupling with other metal oxides [13–18]. Therefore, the present work attempts to modify SnO₂ photocatalysts with non-metal dopants to enhance their photocatalytic activity under ultraviolet (UV) light illumination. Methyl orange is used as the model pollutant to evaluate the photocatalytic activity of the modified SnO₂ nanoparticles under UV light illumination due to their non-biodegradable and toxic properties.

Material and methods

Preparation of nanosized photocatalysts

In this study, raw materials were procured from Sigma-Aldrich Ltd. N,S,C-SnO₂ nanoparticle were synthesized using a precipitation

Table 1Brunauer-Emmett-Teller (BET) measurements.

Samples	Total pore volume (cm ³ g ⁻¹)	Specific surface area (m ² g ⁻¹)
TS0	0.052	20.21
TS11	0.062	41.22
TS21	0.085	63.54
TS31	0.101	81.87
TS41	0.127	103.55
1511	0.127	103.33

method. Stannic chloride pentahydrate was mixed with Thiourea in 500 ml distillated water to form a 0.25-M aqueous solution. Then, the solution was stirred for 3 h. Following complete dissolution, the solution was treated with an ammonia solution (25%) until the solution pH obtained 7. The resulting solution was stirred for another 2 h. Precipitated products were separated from the solution by centrifugation, and dried at 100 °C for 24 h. The obtained products were ground and calcined at an elevated temperature for 3 h with a heating rate of 5 °C/min. The T/S ratio demonstrates the molar ratio of thiourea to Stannic (IV) chloride. Samples were denoted as TS0, TS11, TS21, TS31, and TS41 to indicate the T/S ratios of 0, 1, 2, 3, and 4, respectively.

Characterization

The X-ray diffraction (XRD) patterns obtained on a X-ray diffractometer (type HZG41B-PC) using Cu K α irradiation. X-ray photoelectron spectra (XPS) were recorded on a Kratos Axis Ultra DLD XPS system. UV-vis diffuse reflectance spectral measurements were carried out in a JASCO V-550 double beam spectrophotometer. The surface morphology was examined using scanning electron microscopy (SEM) (JSM 6701F–6701). The particle size of the N,S,C-SnO₂ photocatalyst powders was measured using Transmission Electron Microscope (TEM) (Zeiss EM-900). The Brunauer–Emmett–Teller (BET) surface area (S_{BET}) of the powders was analyzed by nitrogen adsorption in an ASAP2020 surface area and porosity analyzer (Micromeritics, USA).

Photocatalytic experiments

Photocatalytic activity was carried out in a thermostatic cylindrical Pyrex reactor with a 500 ml capacity and appraised by monitoring the degradation of methyl orange under UV light irradiation. A 125-W mercury lamp (Philips; Emission at 365 nm), was used as the UV light source. The solution pH was adjusted by diluted NaOH and HCl solutions. The resulting solution was then stirred continuously in the dark for 20 min to ensure that the suspension is uniform. Then, the photocatalytic run was started under UV light illumination. Samples were periodically taken from the reactor, centrifuged at 6000 rpm for 5 min, and then filtered before being measured on a UV-vis spectrophotometer (Hitachi, U-3010). Photocatalytic activity was evaluated according to the photoabsorbance of methyl orange at the maximum absorption wavelength of 486 nm.

Results and discussion

Characterization of doped SnO₂ nanoparticles

Fig. 1 indicates the XRD patterns of the N,S,C-SnO₂ nanoparticles calcined at various temperatures. The diffraction pattern for TS11 demonstrates several peaks at 2θ = 27.2, 34.4, 52.2 that referred to N,S,C-SnO₂ with cassiterite tetragonal structure (ICDD card No. 41-1445) and the absence of other peaks indicating the high purity of N,S,C-SnO₂. When the calcination temperature

Download English Version:

https://daneshyari.com/en/article/1229094

Download Persian Version:

https://daneshyari.com/article/1229094

<u>Daneshyari.com</u>