Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Three new phloroglucinol derivatives from the aerial parts of *Pogostemon auricularius* and their cytotoxic activity

Linh Thuy Thi Tran^{a,b}, Duc Viet Ho^a, Dung Viet Le^b, Tran Manh Hung^c, Hoai Thi Nguyen^{a,*}, Ain Raal^{d,*}

^a Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue City, 530000, Viet Nam

^b National Institute of Medicinal Materials, 3B Quang Trung, Hanoi City, 100000, Viet Nam

e Medicinal Chemistry Division, Faculty of Chemistry, University of Science, Vietnam National University Hochiminh city, 227 Nguyen Van Cu, District 5, Hochiminh City,

748000, Viet Nam

^d Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse, Tartu, 50411, Estonia

ARTICLE INFO

Keywords: Pogostemon auricularius Pogostemonons A–C Ethnomedicine Cytotoxicity

ABSTRACT

Pogostemonons A–C (1–3), three new phloroglucinol derivatives were isolated from the aerial parts of *Pogostemon auricularius* (L.) Hassk. Their chemical structures were established by 1D, 2D NMR and HRESIMS data. These compounds showed weak to moderate growth inhibitory activities against lung adenocarcinoma (LU-1), oral epidermoid carcinoma (KB), liver hepatocellular carcinoma (Hep-G2), colon adenocarcinoma (SW-480), and gastric adenocarcinoma (AGS) cell lines with IC₅₀ values ranging from 39.80 \pm 4.39 to 98.32 \pm 8.94 µg/mL.

1. Introduction

Pogostemon auricularius (L.) Hassk. is an annual herb belonging to the Lamiaceae family and broadly distributed in India, Sri Lanka, Bangladesh, China and Southeast Asia (Wu and Raven, 1999; Phuong, 2000). The aerial parts of this plant have been used in traditional Asian folk medicine to treat diarrhea, snakebites, rheumatism, and reduce fever (Chi, 2000: Valkenburg and Bunyapraphatsara, 2001: Ouattrocchi, 2012). In addition, its leaves are used to relieve stomach ache and urinary problems in children (Valkenburg and Bunyapraphatsara, 2001). Moreover, the extracts from P. auricularius have shown several biological activities such as microbial resistance, anti-inflammatory, thrombolytic activity, α -amylase inhibitor and anti-diarrhea (Nasir et al., 2015; Nur et al., 2015). However, the knowledge about the chemical composition of P. auricularius is modest. Previous phytochemical studies of this plant have led to the isolation of four diterpenes, including cleistanth-13,15dien-19-oic acid (auricularic acid) (Prakash et al., 1987), 7-hydroxyclethylthio-13,15-diene-18-oic acid, 7-acetoxyclithiol-13,15-diene-18oic acid, and (4R,5S,8R,9S,10S,14R)-cleistanth-12,15-diene-19-oic acid (Hussaini et al., 1993). Three new cytotoxic meroterpenoids pogostemins A-C have been found from P. auricularius by us (Nguyen et al., 2018), also the chemical composition of the essential oil of *P. auricularius* growing in Viet Nam has been studied (Satyal et al., 2018).

This study reported the extraction and isolation of three new compounds, phloroglucinol derivatives pogostemonons A–C (1–3) from the aerial parts of *P. auricularius*. The findings also include details about the chemical structure elucidation and cytotoxic activity of these compounds.

2. Results and discussion

2.1. Spectral and physical data of new isolated compounds

2.1.1. Pogostemonon A (1)

Compound 1 was isolated as a yellow powder. Its molecular formula was established as $C_{23}H_{28}O_7$ from the positive mode HRESIMS quasimolecular ion at m/z 417.1906 $[M+H]^+$ (calcd. for $C_{23}H_{29}O_7$, 417.1913). In the ¹H-NMR spectrum, an olefin proton at δ_H 5.75 (1H, qq, J = 1.5, 7.0 Hz, H3'), and a sextet signal at δ_H 4.09 (1H, sex, J = 6.5, H-2") were assigned. In the high field, the signals of six methyl groups were identified at δ_H 1.98 (3H, s, H-14), 1.93 (3H, s, H-15), 1.89 (3H, t-like, J = 1.5 Hz, H-1'), 1.79 (3H, dd-like, J = 1.0, 7.0 Hz, H-4'),

* Corresponding authors.

https://doi.org/10.1016/j.phytol.2018.09.016

Abbreviations: AGS, gastric cancer; DMSO, dimethyl sulfoxide; Hep-G2, hepatoma cancer; KB, epidermoid carcinoma; LU-1, lung cancer; SRB, sulforhodamine B; SW-480, human colon adenocarcinoma

E-mail addresses: tranlinh.pharm@gmail.com (L.T.T. Tran), hovietduc661985@gmail.com (D.V. Ho), levietdung75imm@gmail.com (D.V. Le), tmhung@hcmus.edu.vn (T.M. Hung), hoai77@gmail.com (H.T. Nguyen), ain.raal@ut.ee (A. Raal).

Received 19 July 2018; Received in revised form 7 September 2018; Accepted 11 September 2018 1874-3900/ © 2018 Phytochemical Society of Europe. Published by Elsevier Ltd. All rights reserved.

Fig. 1. Chemical structures of 1-3 from the aerial parts of Pogostemon auricularius.

1.15 (3H, d, J = 6.5 Hz, H-5"), and 0.92 (3H, t, J = 7.5 Hz, H-4"). In addition, the signal of one isolated methylene group was observed at $\delta_{\rm H}$ 3.55 (2H, br s, H-7). Combination of the ¹³C-NMR and HSQC spectra of 1 indicated that this compound contained 23 carbon atoms including 6 methyls, 2 methylenes, 2 methines groups and 13 non-protonated carbons. It is possible to predict the presence of some specific groups such as two carbonyl carbons at $\delta_{\rm C}$ 212.4 (C-1"), and 180.7 (C-4), in addition to a methyl carbon that attached to the aromatic ring at $\delta_{\rm C}$ 7.9 (C-14). Notably, the carbonyl signal at $\delta_{\rm C}$ 180.7 (C-4) located toward high field in the ¹³C-NMR spectrum suggested that the presence of enone system in 1. Based on the analysis of the above spectrum data, 1 was proposed as a derivative of phloroglucinol (Ishiguro et al., 1987). In the HMBC spectrum, the correlations of H-4″ ($\delta_{\rm H}$ 0.92)/H-5″ ($\delta_{\rm H}$ 1.15) to C-2″ ($\delta_{\rm C}$ 46.6)/C-3" ($\delta_{\rm C}$ 28.3), of H-5" to C-1" ($\delta_{\rm C}$ 212.4) confirmed the presence of 1-oxo-2-methylbutyl group. The methyl group was located at C-12 of the benzene ring basing on the HMBC correlations between $\delta_{\rm H}$ 1.98 (3H, H-14) with $\delta_{\rm C}$ 162.7 (C-11), 104.7 (C-12), and 163.0 (C-13) (Fig. 2). Similarly, the HMBC correlations between H-1' ($\delta_{\rm H}$ 1.89)/H-4' ($\delta_{\rm H}$ 1.79) and C-2' ($\delta_{\rm C}$ 130.7)/C-3' ($\delta_{\rm C}$ 130.6) confirmed for the presence of the 1-methylprop-1-envl fragment. Next, the configuration of C-2'/C-3' double bond was identified by comparing the coupling constants values of H-1', H-3' and H-4' in 1 with those of tiglic and angelic acids and their derivatives (Fraser, 1960; Joseph-Nathan et al., 1984). We notice that the $J_{H-1'/H-3'}$ value is larger than $J_{H-1'/H-4'}$ in the *E* configuration, and vice versa. The $J_{H-1'/H-3'}J_{H-1'/H-4'}$ values of 1 were found as 1.5 and 1.0 Hz, respectively. Therefore, the E configuration was assigned for C-2'/C-3' double bond of 1. The 1-methylprop-1-enyl chain was further attached to C-2 by the observation of the HMBC correlations between H-1' ($\delta_{\rm H}$ 1.89)/H-3' ($\delta_{\rm H}$ 5.75) and C-2 ($\delta_{\rm C}$ 160.0). The remain methyl singlet signal was located at C-3 based on interaction between $\delta_{\rm H}$ 1.93 (3H, H-15) and C-2 ($\delta_{\rm C}$ 160.0), C-3 ($\delta_{\rm C}$ 113.9), and C-4 ($\delta_{\rm C}$ 180.7) (Fig. 2). The linkage between phloroglucinol (A) and γ pyrone (B) moieties was suggested through the methylene bridge (C(7) H₂). This suggestion was possibly deduced by the strong downfield shift of H-7 ($\delta_{\rm H}$ 3.55) compared to normal methylene position (Bohlmann et al., 1980; Hänsel et al., 1980). Surprisingly, the signal of methylene protons (H-7) was very broad and exhibited the weakly correlations with C-5 ($\delta_{\rm C}$ 101.7)/C-6 ($\delta_{\rm C}$ 170.7) in the HMBC spectrum. This unusual phenomenon might be due to the slow rotation around the methylene

bridge of two ring systems (Appendino et al., 2007). Consequently, compound **1** was elucidated as a new phloroglucinol derivative, and was named pogostemonon A.

2.1.2. Pogostemonon B (2)

Compound 2 was obtained as a white amorphous powder. Its molecular formula was established as C22H28O7 from the positive mode HRESIMS quasi-molecular ion at m/z 405.1909 [M+H]⁺ (calcd. for C222H29O7, 405.1913). The ¹H-NMR spectrum of **2** showed typical singlet signal of a tertiary methyl group [$\delta_{\rm H}$ 2.01 (3H, s, H-14)], two secondary methyl groups [$\delta_{\rm H}$ 1.23 (3H, d, J = 7.0 Hz, H-1'), 1.15 (3H, d, J = 6.5 Hz, H-5")], two terminal methyl groups [$\delta_{\rm H}$ 0.91, 0.92 (3H, each, J = 7.0 Hz, H-4' and H-4'')] as well as one olefinic proton [$\delta_{\rm H}$ 6.08 (1H, s, H-3)]. Analysis of the ¹³C-NMR and HSQC spectra of 2 revealed 22 signals for five methyls, three methylenes, three methines, and eleven non-protonated carbons. The assignments of ¹H and ¹³C-NMR data of 2 were completed with the aid of HSQC and HMBC (Fig. 2). These NMR data were well agreed with those of 1, especially in the phloroglucinol (A) moiety. However, the ¹³C chemical shifts of the pyrone ring of **2** [$\delta_{\rm C}$ 169.5 (C-2), 102.2 (C-3), 170.0 (C-4), 103.0 (C-5), and 171.3 (C-6)] (numbering according to 2) were similar to those of 6-(2-butyl)-3-ethyl-4-hydroxy-2-pyrone (germicidin) [$\delta_{\rm C}$ 165.9 (C-2), 99.6 (C-3), 167.2 (C-4), 104.7 (C-5), and 167.5 (C-6)] isolated from the supernatant of submerged culture of Streptomyces viridochromogenes NRRL (Petersen et al., 1993) suggesting that 2 contained a α -pyrone ring. This was supported by the HMBC correlations from H-7 ($\delta_{\rm H}$ 3.63) to C-4 ($\delta_{\rm C}$ 170.0)/C-5 ($\delta_{\rm C}$ 103.0)/C-6 ($\delta_{\rm C}$ 171.3), from H-3 ($\delta_{\rm H}$ 6.08, br s) to C-2 ($\delta_{\rm C}$ 169.5)/C-5 but not C-6 (Fig. 2). Furthermore, the crosspeaks of H-1' ($\delta_{\rm H}$ 1.23)/H-4' ($\delta_{\rm H}$ 0.91) to C-2' ($\delta_{\rm C}$ 40.9)/C-3' ($\delta_{\rm C}$ 28.5), of H-1'/H-2' ($\delta_{\rm H}$ 2.54)/H-3' ($\delta_{\rm H}$ 1.58, 1.70) to C-2 in the HMBC spectra allowed the direct attachment of sec-butyl group to the α -pyrone ring at C-2 (numbering according to 2). Thus, the structure of 2 was elucidated as shown in Fig. 1, and was named pogostemonon B.

2.1.3. Pogostemonon C (3)

Compound **3** was obtained as a white amorphous powder and its molecular formula was determined as $C_{23}H_{28}O_7$ from the NMR and HRESIMS data. The 1DNMR interpretation of **3** in combination with the aid of HSQC and HMBC showed that this compound is almost similar to

Download English Version:

https://daneshyari.com/en/article/12292516

Download Persian Version:

https://daneshyari.com/article/12292516

Daneshyari.com