

Contents lists available at ScienceDirect

### Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa



# Investigation on the photophysical properties of ESPT inspired salicylaldehyde-based sensor for fluoride sensing



## Kai Liu<sup>a,\*</sup>, Xiaojun Zhao<sup>b</sup>, Qingxiang Liu<sup>b</sup>, Jianzhong Huo<sup>a</sup>, Xing Wang<sup>a</sup>, Yanping Wu<sup>b</sup>

<sup>a</sup> Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin 300387, China <sup>b</sup> Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, China

#### HIGHLIGHTS

#### GRAPHICAL ABSTRACT

- A simple, highly selective and sensitive chemosensor **QP** has been developed.
- Sensor **QP** exhibited fluorescence enhancement for biologically important fluoride ion.
- ESPT resulted in the fluoridetriggered 'turn on' fluorescence.



#### ARTICLE INFO

Article history: Received 6 August 2014 Received in revised form 2 December 2014 Accepted 15 December 2014 Available online 3 January 2015

Keywords: 'Turn on' fluorescence Anion recognition ESPT Deprotonation

#### ABSTRACT

A simple, highly selective and sensitive chemosensor (E)-2-((quinolin-8-ylimino) methyl) phenol (**QP**) has been developed for the fluoride, as demonstrated by the photophysical properties obtained by UV-vis and fluorescent methods. Excited-state inter/intramolecular proton transfer (ESPT) was suggested to be responsible for the fluoride-induced 'turn on' fluorescence and the blue shift of 25 nm in the emission spectrum.

© 2014 Elsevier B.V. All rights reserved.

#### Introduction

The development of artificial neutral receptor for anions has attracted growing interest in recent years [1,2], due to the important role of anion in the biology, medicine and environment. Among these, hydrogen bond, especially the NH group [1–7], was usually used to design the anion receptor. However, OH subunit, being a well-known site to involve in natural anion binding and

transfer of protein, was paid less attention in the design of synthetic anion receptor [1,2,8,9].

Many anion fluorescent sensors [1,2,10–12] have been developed due to their simplicity, high selectivity and impressive detectablility. And numerous signal mechanisms [10], such as intramolecular charge transfer, photoinduced electron transfer, metal-to-ligand charge transfer and competitive binding, were used extensively to design the fluorescent anion sensors. Whereas excited-state intra/intermolecular proton transfer (ESPT), as a well-established signal mechanism [13–15], was poorly applied in anion recognition and sensing [8,11,16–20]. Generally, ESPT occurs in the excited state through five or six-member intramolec-

<sup>\*</sup> Corresponding author. Tel.: +86 22 23766515; fax: +86 22 23766532. E-mail address: hxxylk@mail.tjnu.edu.cn (K. Liu).

ular hydrogen bonded ring [13–15,20], in which a proton is transferred to an electronegative atom. And the enhancement of the acidity of the hydrogen bond donor, *e.g.* OH group, was advantageous to ESPT upon excitation [16,17,20–22].

With the aforementioned considerations in mind, herein we reported the interaction and sensing properties of the (E)-2-((quinolin-8-ylimino) methyl) phenol (QP) for biologically important fluoride sensing. ESPT was responsible for the fluoride-triggered fluorescence enhancement.



#### Experimental

Tetrabutylammonium (TBA) salts of various anions were obtained from Sinopharm Chemical Reagent Co. Ltd., which were stored in desiccators under vacuum. Acetonitrile for spectroscopy was purchased from the J&K Scientific Ltd. Other chemicals were of analytical grade from commercial suppliers and were employed as received without further purification.

<sup>1</sup>H NMR spectra were recorded on a Bruker 400 MHz spectrometer using TMS as an internal standard. Absorption spectra and fluorescence spectra were acquired on Shimadzu UV 2550 spectrophotometer and Shimadzu RF-5301PC spectrofluorometer, respectively.

**QP** was synthesized by condensation of 8-aminoquinoline and salicylaldehyde according to literature [23].

#### **Results and discussion**

#### UV-vis spectral studies of **QP**

Fig. 1 depicted the spectral changes of **QP** upon addition of 50 equiv. various anions. **QP** produces a maximum absorption at 338 nm, which was ascribed to the  $\pi$ - $\pi$ \* transition [24] favored by intramolecular hydrogen bonding [8,25]. From the Fig. 1, it was seen that only F<sup>-</sup> induced the obvious red shift of **QP** from 338 nm to 433 nm. Other anions (Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup> and AcO<sup>-</sup>) produced insignificant changes in absorption, even at higher concentration. This suggested the weak coordination interaction between these anions and **QP**.



Fig. 1. UV-vis spectral changes of QP (2.0  $\times$   $10^{-5}$  M) in MeCN after the addition of 50.0 equiv. various anions.



Fig. 2. UV-vis spectral changes of  $\textbf{QP}~(2\times10^{-5}\,\text{M})$  in MeCN upon addition of 0–50.0 equiv.  $F^-$ .

Spectrophotometric titration was conducted by addition of TBAF to the CH<sub>3</sub>CN of **QP**. As displayed in Fig. 2, with the gradual increase of F<sup>-</sup>, the absorbance band at 338 nm of **OP** decreased and a new peak at 433 nm occurred and developed. These spectral changes were presumably attributed to the proton transfer from the phenolic OH group to F<sup>-</sup>, and the formation of negative changed PhO<sup>-</sup> enhanced the "push-pull" effect [8] of the intramolecular charge transfer in the ground state. Furthermore, the clear isosbestic point at 386 nm was observed. This indicated that the stoichiometry of  $F^-$  and **OP** was 1:1. Subsequently, TBAOH, which can remove the proton of OH binding site [2,8,10,18], was added to the QP solution. Similar spectral changes were observed for OH<sup>-</sup> and F<sup>-</sup> (Supporting Information, Fig. S1). This, therefore, confirmed our assumption. Furthermore, the binding strength between QP and fluoride were evaluated by non-linear leastsquare analysis of the titration curves according to the relation for 1:1 complexation. Satisfactory non-linear relationships (R = 0.982) were observed for the spectrophotometer titration curve (Supporting Information, Fig. S2a). And the binding constant was calculated to be  $2.85 \times 10^4 \text{ M}^{-1}$ .

#### Fluorescence response of QP

To learn more sensing affinities of **QP** for various anions ( $F^-$ ,  $Cl^-$ ,  $Br^-$ ,  $I^-$ ,  $H_2PO_4^-$ ,  $NO_3^-$  and  $AcO^-$ ), fluorescence titration was carried out with excitation at 308 nm. Fig. 3 displayed the emission



Fig. 3. Emission spectral changes of  $QP\,(2.0\times10^{-5}\,\text{MM})$  in MeCN after addition of 0–40.0 equiv. F<sup>-</sup>.

Download English Version:

# https://daneshyari.com/en/article/1229370

Download Persian Version:

https://daneshyari.com/article/1229370

Daneshyari.com