

Contents lists available at ScienceDirect

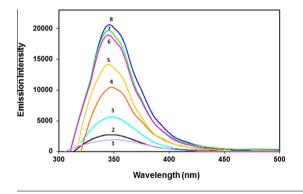
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies

CrossMark

Omyma A.M. Ali^{a,*}, Samir M. El-Medani^b, Maha R. Abu Serea^a, Abeer S.S. Sayed^a


^a Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt ^b Chemistry Department, Faculty of Science, El-Fayoum University, El-Fayoum, Egypt

HIGHLIGHTS

- The complexes are characterized by different spectroscopic techniques.
- The Schiff base ligand exhibited efficient corrosion inhibitors.
- The ligand and its complexes exhibited intraligand (π-π*) fluorescence and can potentially serve as photoactive materials.
- The thermal analyses confirmed high stability for all complexes.

G R A P H I C A L A B S T R A C T

Emission spectra of: (1) [Sm(L)₃](ClO₄)₃H₂O; (2) Ligand; (3) [Hg(L)(AcO)₂]H₂O; (4) [La(L)(NO₃)₂] NO₃H₂O; (5) [Zn(L)(AcO)₂]H₂O; (6) [Co(L)(Cl)₂(H₂O)₂]2H₂O; (7) [Ni(L)(Cl)₂]2H₂O; (8) [Cu(L)(Cl)₂]·H₂O

ARTICLE INFO

Article history: Received 3 July 2014 Received in revised form 14 September 2014 Accepted 19 September 2014 Available online 27 October 2014

Keywords: Complexes Spectral Fluorescence 1,2-Diaminobenzene Antibacterial activities

ABSTRACT


A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV–Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats–Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes have been screened for antibacterial activities.

© 2014 Elsevier B.V. All rights reserved.

Introduction

* Corresponding author. Tel.: +20 1224024596. E-mail address: omaymaahmed92@yahoo.com (O.A.M. Ali).

http://dx.doi.org/10.1016/j.saa.2014.09.079 1386-1425/© 2014 Elsevier B.V. All rights reserved. For decades, coordination chemistry of Schiff base ligands has been the subject of great interest. This interest comes from the fact

Scheme 1. Preparation of L ligand.

Table 1				
Analytical and	physical data	of ligand and	d its com	plexes.

Compound	Color (% yield)	M.Wt. M.p. (M.p. (°C)	Found (calculated)			$\Lambda_m (\Omega^{-1}\mathrm{mol}^{-1}\mathrm{cm}^2)$
				% C	% H	% N	
$L(C_{11}H_{10}N_2O)$	Brown (85)	186.21	180	70.86 (70.95)	5.32 (5.41)	15.05 (15.04)	-
CuC ₁₁ H ₁₂ N ₂ O ₂ Cl ₂	Black (60)	338.67	>300	39.19 (39.01)	3.94 (3.57)	8.50 (8.27)	12
NiC ₁₁ H ₁₄ N ₂ O ₃ Cl ₂	Dark brown (70)	351.86	>300	37.66 (37.55)	4.37 (4.01)	7.40 (7.96)	15
FeC11H14N2O3Cl3	Black (80)	384.45	>300	34.54 (34.37)	3.05 (3.67)	7.39 (7.29)	10
CoC11H18N2O5Cl2	Dark brown (55)	388.11	>300	34.34 (34.04)	5.72 (4.67)	7.22 (7.22)	16
ZnC15H18N2O6	Black (60)	387.69	>300	46.27 (46.47)	4.44 (4.68)	7.54 (7.22)	15
HgC15H18N2O6	Dark brown (70)	522.91	>300	34.78 (34.47)	3.23 (3.47)	5.11 (5.36)	20
LaC ₁₁ H ₁₂ N ₅ O ₁₁	Black (85)	529.15	>300	24.87 (24.97)	2.20 (2.28)	13.77 (13.24)	87
SmC33H32N6O16Cl3	Black (65)	1025.35	>300	38.12 (38.66)	3.59 (3.15)	8.22 (8.19)	320

that their metal complexes have found various applications and play an important role in biological systems [1–3]. Heterocyclic compounds such as furan and related molecules are good ligands due to the presence of one or more ring oxygen atoms with a localized pair of electrons [4–7]. Also, these heterocyclic compounds have found increased interest in the context of bioinorganic chemistry [8,9]. The high affinity for the chelation of the Schiff bases towards the transition metal ions is used in preparing their solid complexes. Schiff base ligands are able to coordinate many different metals [10–17] and to stabilize them in various oxidation states. Moreover, luminescent compounds are attracting much current research interest because of their many applications including emitting materials for organic light emitting diodes, light harvesting materials for photocatalysis and fluorescent sensors for organic or inorganic analyses [16–20]. Several Schiff bases have recently been investigated as corrosion inhibitors for various metals and alloys in acid media [21-27]. Inhibitors are generally used to reduce corrosive attack of the acid solutions on metallic material. Many symmetrical bis tetradentate Schiff bases of 1,2-diamines with o-hydroxy aldehydes/ketones have been prepared and studied intensively [28]. However, much less attention has been

Table 2

IR data (4000–400 cm⁻¹) of the Schiff base ligand and its complexes.

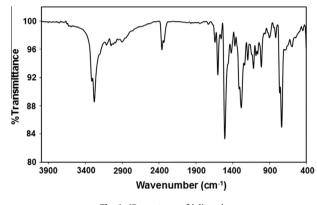


Fig. 1. IR spectrum of L ligand.

focused on unsymmetrical Schiff bases derived from 1,2-diamines and different aldehydes/ketones. The present study deals with the preparation and characterization of heterocyclic Schiff base ligand, 2-[(2-furylmethylene)]phenylenediamine, and its complexes with Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) and Sm(III).

Compound	IR data ^a (cm ⁻¹)						
	$v_{(NH2)}$ or $v_{(OH)}$	v _{C=N}	v _{C-O-C} (furan)	v _{M—O} (furan)	v _{M-N}	Other bands	
L	3315(s)	1603(s)	1240(m)	-	-	-	
$[Cu(L)(Cl)_2] \cdot H_2O$	3282(s) 3418(b)	1613(s)	1253(m)	464(w)	444(w)	_	
$[Ni(L)(Cl)_2] \cdot 2H_2O$	3352(b)	1617(s)	1235(m)	532(w)	449(w)	_	
[Fe(L)(Cl) ₃ H ₂ O]H ₂ O	3372(b)	1608(s)	1254(w)	527(w)	479(m)	_	
$[Co(L)(Cl)_2(H_2O)_2] \cdot 2H_2O$	3365(b)	1623(s)	1251(w)	546(w)	465(w)	-	
$[Zn(L)(AcO)_2]H_2O$	3315(s) 3275(s) 3190(b)	1600(w)	1245(w)	545(w)	453(w)	1509; $v_{as}(COO^{-})$, 1448; $v_{s}(COO^{-})$ bidentate	
$[Hg(L)(AcO)_2]H_2O$	3190(b)	1612(s)	1250(m)	530(w)	447(w)	1496; v _{as} (COO ⁻), 1405; v _s (COO ⁻) bidentate	
$[La(L)(NO_3)_2]NO_3H_2O$	3388(b)	1644(s)	1243(w)	528(w)	450(w)	1461, 1145, 1331, 814; v(NO ₃) bidentate 1384; v(NO ₃) ionic	
$[Sm(L)_3](ClO_4)_3H_2O$	3171(b)	1599(s)	1258(m)	531(w)	457(w)	1102, 623; $v(ClO_4^-)$ ionic	

^a s, Strong; m, medium; w, weak; b, broad.

Download English Version:

https://daneshyari.com/en/article/1229479

Download Persian Version:

https://daneshyari.com/article/1229479

Daneshyari.com