Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

On two site-specific nitrite-sensing nanocomposites having a core-shell structure: Construction, characterization and sensing performance

Muhetaer Kadeerhazi^a, Azam Ali^b, Alaa El-Din Bekhit^{c,*}

^a College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China

^b Department of Applied Science, University of Otago, Dunedin 9054, New Zealand

^c Department of Food Science, University of Otago, Dunedin 9054, New Zealand

ARTICLE INFO

Article history: Received 27 June 2016 Received in revised form 9 August 2016 Accepted 17 August 2016 Available online 18 August 2016

Keywords: Nitrite ion Core-shell structure Rhodamine probe Emission quenching

1. Introduction

As a class of widely-used antistaling agent, nitrite salts have been considered as important analytical targets since they react with amines of living body and release carcinogenic nitrosamines, increasing cancer risks and deformities [1-3]. The World Health Organization (WHO) has consequently set a ceiling limit in drinking water for nitrite as 65 µM [4]. Modern analytical techniques have been proved valid and practicable for nitrite sensing, such as spectrofluorimetry, electrometry, capillary electrophoresis and chromatography. Their precise readings, however, are based on fine equipment and complicated pretreatment procedures, which makes them improper for on-line monitoring and in-field detection [5–9].

Optical sensing technique has been frequently nominated as a candidate owing to its virtues of simple equipment, non-invasive character and easy operation. In addition, optical signals are suitable for long-distance monitoring since they are immune from electromagnetic interference [10]. Various fluorescent dyes and sensitizers have been developed as nitrite sensing chemosensors, such as rhodamine, coumarin, fluorescein, assafranine and their derivatives [11–15]. For example, a carbazole-based chemosensor finishes its recognition through a reaction between nitrite and I⁻ ion [12]. Similarly, rhodamine derivatives form a nitroso compound in acid medium with nitrite [14]. To guarantee fluent analyte diffusion and sensing, supporting host is usually applied to immobilize chemosensor molecules, including polymers, silicates, metal oxides and so on [16-18]. Among these candidates, a mesoporous

Corresponding author. E-mail address: BekhitAED071@163.com (A.E.-D. Bekhit).

ABSTRACT

This paper reported two site-specific nitrite-sensing nanocomposite samples having a core-shell structure, where Fe₃O₄ nanoparticles were used as core, two rhodamine derivatives served as chemosensor and MCM-41 was applied as supporting host, respectively. These composite samples and their structure were analyzed and confirmed SEM/TEM, XRD, N₂ adsorption/desorption, magnetic feature, IR and thermogravimetric analysis. Their nitrite sensing performance was discussed based on emission quenching, with limit of detection as low as 1.2 µM. Detailed analysis suggested that these composite samples followed a static sensing mechanism based on an additive reaction between NO⁺ and chemosensors. After being quenched by nitrite, these samples could be recovered by sulphamic acid.

© 2016 Elsevier B.V. All rights reserved.

silica molecular sieve MCM-41 has emerged as a promising one by showing large surface-area-to-volume ratio, high stability, chemical inertness and highly ordered tunnels.

Except for a promising supporting host and a shining chemosensor, there is still another important function to be met, which is recyclability. This function requires site-specific performance from corresponding sensing system after it finishes its recognition. To satisfy this objective, multifunctional composite materials have been proposed since they generally combine features of each component and preserve them well [19,20]. As a class of frequently mentioned site-specific materials, magnetic composite ones, such as Fe₃O₄ based ones, have shown their application in magnetic guiding, sample sorting and isolating [21–23]. In addition, these magnetic composite materials can be readily modified, such as silica coating, to minimize magnetic effect on chemosensor emission and connect additional components [24-25].

Guided by above consideration, in this effort, two site-specific nitrite-sensing nanocomposite samples having a core-shell structure have been designed, where Fe₃O₄ nanoparticles are used as core, two rhodamine derivatives serve as chemosensor and MCM-41 is applied as supporting host, respectively. Their identification and nitrite sensing performance are discussed in detail.

2. Experimental details

Scheme 1 shows preparation strategy for our desired nitrite sensing nanocomposite samples, RB@MCM-41@Fe₃O₄ and RSB@MCM-41@ Fe₃O₄. Detailed synthesis for supporting matrix MCM-41@Fe₃O₄ and chemosensors is given as Supporting information. A general preparation route for RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄ is described as

Scheme 1. Preparation strategy for RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄.

follows. The mixture of MCM-41@Fe₃O₄ (1 g) and RB-Si (or RSB-Si, 0.8 g, excess) in anhydrous toluene (50 mL) was heated at 120 °C for 12 h under N₂ protection. After cooling, solid product was collected and washed with toluene and ethanol to give RB@MCM-41@Fe₃O₄ (or RSB@MCM-41@Fe₃O₄).

3. Results and discussion

3.1. Design strategy and morphology of RB@MCM-41@Fe $_{3}O_{4}$ and RSB@MCM-41@Fe $_{3}O_{4}$

For a clear understanding on these two nitrite sensing nanocomposite samples, their design strategy is explained as follows. Recyclability is desired from these nitrite sensing samples, which asks a site-specific ability after they accomplish nitrite recognition. To satisfy this objective, Fe₃O₄ magnetic core in RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄ is designed for magnetic guiding. To decrease magnetic aggregation, facilitate following functionalization procedures and minimize magnetic effect on chemosensor emission, Fe₃O₄ magnetic core is encapsulated by amorphous silica. Owing to its high surface-area-to-volume ratio and highly regular hexagonal tunnels, silica molecular sieve MCM-41 has been proved as a promising supporting host for optical dopants [10,26,27]. In this work, MCM-41 is chosen as supporting host for our two chemosensors since its regular tunnels are positive for analyte adsorption and diffusion. Our two chemosensors are covalently embedded into MCM-41 host to minimize chemosensor leakage and improve their stability. Given above assumption, good nitrite sensing performance with recyclability is desired from RB@MCM-41@Fe₃O₄ and RSB@ MCM-41@Fe₃O₄.

For a visual evaluation on these composite samples, scanning electron microscopy (SEM) images of bare Fe₃O₄ nanoparticles, SiO₂@ Fe₃O₄, MCM-41@Fe₃O₄, RB@MCM-41@Fe₃O₄ and RSB@MCM-41@ Fe₃O₄ are shown in Fig. 1. Our as-synthesized Fe₃O₄ nanoparticles are generally spherical ones with mean diameter of ~360 nm. These nanoparticles are aggregated together owing to their magnetic nature, showing rough surface and bad dispersal. Amorphous silica encapsulation increases their mean diameter to ~400 nm (SiO₂@Fe₃O₄), with their surface greatly smoothed. Their dispersal is obviously improved as well, which means that SiO₂ layer (20 nm) is effective on blocking magnetic aggregation. MCM-41 tunnels are constructed onto SiO₂@Fe₃O₄, so MCM-41@Fe₃O₄ diameter is further increased to 500 nm. After co-hydrolyzation and chemosensor loading, good monodispersal is observed for RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄, which means that magnetic attraction has been successfully sealed in them. Their mean diameters are all round 500 nm, suggesting that these procedures have slim effect on particle diameter. It is thus assumed that our chemosensors have been grafted into MCM-41 tunnels instead of sample surface, which will be further confirmed below. Tunnel length in RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄ is estimated as ~50 nm, which is consistent with their transmission electron microscopy (TEM) images shown in Fig. 1. Their core-shell structure is thus finally confirmed.

3.2. XRD analysis, N₂ adsorption/desorption and magnetic feature

For a fast analysis on the magnetic core in our composite samples, Fig. S1A (Supporting information) shows wide angle XRD (WAXRD) curves of bare Fe₃O₄ nanoparticles, MCM-41@Fe₃O₄, RB@MCM-41@ Fe₃O₄ and RSB@MCM-41@Fe₃O₄. These four samples have nearly identical diffraction peaks which are quite similar to those of standard Fe₃O₄ nanoparticles [19,20,26,27]. This result confirms that Fe₃O₄ core has been prepared successfully and well preserved after silica encapsulation, MCM-41 construction and chemosensor loading procedures. Their different diffraction intensity values should be attributed to above modification procedures which actually decrease Fe_3O_4 weight ratio and regularity in these samples. Small angle XRD (SAXRD) patterns of MCM-41@Fe₃O₄, RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄ are shown in Fig. S1B (Supporting information) so that their mesoporous structure can be revealed. Similar to literature reports, three well-revolved diffraction peaks are detected for each SAXRD curve, labeled as d_{100} , d_{110} and d_{200} , respectively [10]. This result suggests that there is mesoporous structure on MCM-41@Fe₃O₄ which has been well preserved after chemosensor loading procedure.

Aiming at a further understanding on the mesoporous structure on sample surface, N₂ adsorption/desorption isotherms of MCM-41@ Fe₃O₄, RB@MCM-41@Fe₃O₄ and RSB@MCM-41@Fe₃O₄ are recorded and shown in Fig. S2 (Supporting information). Regardless of their different adsorption volumes, type-IV isotherms are observed for all four samples which are much similar to those of standard MCM-41 samples [10]. This observation finally confirms that MCM-41 tunnels have been successfully prepared onto Fe₃O₄ core and well preserved after chemosensor loading procedure. Efficient analyte adsorption and fluent analyte transportation are expected from these highly ordered MCM-41 tunnels [10]. As for MCM-41@Fe₃O₄, its surface area, pore volume and pore size are measured as 636.237 m²·g⁻¹, 0.566 cm³·g⁻¹ and 2.646 nm, respectively. After chemosensor loading procedure, these parameters are measured as 441.185 $m^2 \cdot g^{-1}$, 0.442 $cm^3 \cdot g^{-1}$ and 2.420 nm for RB@MCM-41@Fe₃O₄, 411.335 m²·g⁻¹, 0.406 cm³·g⁻¹ and 2.315 nm for RSB@MCM-41@Fe₃O₄, respectively. It is clear that mesoporous parameters of RB@MCM-41@Fe₃O₄ and RSB@MCM-41@ Fe₃O₄ are smaller than those of MCM-41@Fe₃O₄. Combined with their similar diameters to that of MCM-41@Fe₃O₄, we come to a conclusion Download English Version:

https://daneshyari.com/en/article/1230020

Download Persian Version:

https://daneshyari.com/article/1230020

Daneshyari.com