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solved.
� Dirac Delta function and Greens

function is used.
� Absorption spectra and resonance

Raman excitation profile is studied.
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a b s t r a c t

An analytically solvable model for the crossing of a harmonic and a Morse potential coupled by Dirac
Delta function has been proposed. Further we explore the electronic absorption spectra and resonance
Raman excitation profile using this model and found that curve crossing had significant effect on the res-
onance Raman excitation profile.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In various atomic and molecular processes we have different
type of transitions which occur between two atomic/molecular
states and it is worthwhile to say that potential energy curve cross-
ing plays a key role in such kind of transitions. Nonadiabatic tran-
sitions (transitions between two adiabatic states or diabatic states)
generally occur between bound states [1]. Nonadiabatic transitions
also play a very important role in change of state/phase [2–6] in
different kind of dynamic processes occurring in the field of

biology, chemistry and physics. Similarly, various spectroscopic,
collisions processes and different kind of reactions are governed
by nonadiabatic transitions at crossing or avoided crossing of the
potential energy surfaces [7]. Radiationless transitions in condense
matter physics, flouroscence quenching, self- trapping of excitons,
laser assisted collisions reactions are some of the other examples
[8,9] where nonadiabatic transitions due to curve crossing or
avoided crossing play an important role. Other important fields
of study related to nonadiabatic transitions include the Zener
transitions in flux driven matellic rings [10], super conducting
Josephson junctions [11], nuclear collisions and reactions in
nuclear physics [12], electron proton transfer processes in biologi-
cal molecules [13]. Such kind of transitions also play a very
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important role in neutrino conversion in the sun and provide an
evidence for its existence in the mutability of the universe [14].
It has been also commented by Shaik [15] that curve crossing/
avoided crossing could be interpreted as a general mechanism of
rearrangement of electrons by molecules leading to the formation
and breaking of bonds. Nonadiabatic transitions have been also
studied as a mechanism of dissociation of molecules on metal sur-
faces as reported by Kosloff [16] in his studies. The first report on
such kind of transitions came into existence into 1932, when the
pioneering works were published by Landau [17], Zener [18] and
Stueckelberg [19] and by Rosen and Zener [20]. Since1932, there
are numerous research papers have been published in this area
using analytical as well as computational approach [21–33]. In
our earlier publications we have reported analytical solution in
those cases where two or more arbitrary potentials are coupled
by Dirac Delta interactions [34,37,35,38,36,39]. Recently we have
extended our research to deal with the cases where two potentials
are coupled by any arbitrary interaction [40]. One of the great
advantage of Dirac Delta coupling model is that we can find exact
analytical solution using this model.

2. Mathematical model

We consider the crossing of two diabatic curves (a harmonic
potential and a Morse potential in the present case) and the cou-
pling between them is assumed to be a Dirac Delta function which
is responsible for transitions between these two considered dia-
batic curves. Nonadiabatic transition due to curve crossing would
occurs in the neighborhood of the crossing point or in other words
is given by

V1ðxÞ � V2ðxÞj j ’ VðxcÞj j: ð1Þ

In the above equation x is the nuclear coordinate and xc is consid-
ered as crossing point. V1ðxÞ and V2ðxÞ are the diabatic potentials
(and Vðxc) represent the coupling between them. In real systems
the transitions between the two diabatic potentials occurs at the
crossing point. This can be attributed to the fact that necessary
energy transfer between the electronic and nuclear degrees of free-
dom is minimum at this point, hence it is worthful to analyze a cou-
pling which is localized near the crossing point rather than using a
model where coupling is constant or same elsewhere. Thus we put
(see Appendix A for more details on diabatic coupling, where we do
a calculation on real system like Lithium chloride i.e. (Eq. (2), Fig. 4))

VðxÞ ¼ k0dðx� xcÞ; ð2Þ

here k0 is a constant. This model has the advantage that it can be
analytically solved.

3. Exact analytical approach

In this section we derive exact analytical expressions for wave
function and Green’s function which are needed to study the effect
of curve crossing on electronic absorption and resonance Raman
excitation profile. We write the probability amplitude for the two
included states as

Uðx; tÞ ¼
/1ðx; tÞ
/2ðx; tÞ

� �
; ð3Þ

where /1ðx; tÞ and /2ðx; tÞ are the probability amplitude for the two
states. Uðx; tÞ obey the time dependent Schrodinger equation. In the
subsequent calculations as well as the present one (we take �h ¼ 1)

i
@Uðx; tÞ
@t

¼ HUðx; tÞ: ð4Þ

H is given by

H ¼
H1ðxÞ VðxÞ
VðxÞ H2ðxÞ

� �
; ð5Þ

where HiðxÞ is

HiðxÞ ¼ �
1

2m
@2

@x2 þ ViðxÞ: ð6Þ

the half Fourier transform UðxÞ of UðtÞ is defined by

UðxÞ ¼
Z 1

0
UðtÞeixtdt: ð7Þ

writing the half Fourier transform of Eq. (4) gave us

UðxÞ ¼ iGðxÞUð0Þ; ð8Þ

where GðxÞ is defined by

ðx� HÞGðxÞ ¼ I: ð9Þ

In the position representation, the above equation may be written
as

Uðx;xÞ ¼ i
Z 1

�1
Gðx; x0; xÞUðx0;xÞdx0; ð10Þ

where Gðx; x0;xÞ is

Gðx; x0;xÞ ¼ hxjðx� HÞ�1jx0i: ð11Þ

Writing

Gðx; x0;xÞ ¼
G11ðx; x0;xÞ G12ðx; x0;xÞ
G21ðx; x0;xÞ G22ðx; x0;xÞ

� �
ð12Þ

and applying the partitioning technique we can write

G11ðx; x0;xÞ ¼ hxj½x� H1 � Vðx� H2Þ�1V �
�1
jx0i: ð13Þ

The above equation is true for any general potential VðxÞ. Our equa-
tion is further simplified if V is a delta function located at the cross-
ing point

G11ðx; x0;xÞ ¼ G0
1ðx; x0;xÞ

þ K2
0G0

1ðx; xc; xÞG0
2ðxc; xc;xÞG0

1ðxc; x0;xÞ
1� K2

0G0
1ðxc; xc;xÞG0

2ðxc; xc; xÞ
; ð14Þ

where

G0
i ðx; x0;xÞ ¼ hxjðx� HiÞ�1jx0i; ð15Þ

The above value of Green’s function corresponds to propagation of
the particle starting at x0 on the second diabatic curve, in the
absence of coupling to the first diabatic curve. In a similar fashion
one can get

G12ðx; x0;xÞ ¼ K0G0
1ðx; xc;xÞG0

2ðxc; x0;xÞ
1� K2

0G0
1ðxc; xc; xÞG0

2ðxc; xc;xÞ
: ð16Þ

The expressions for G22ðx; x0;xÞ and G21ðx; x0;xÞ can be further
derived by using a similar approach as shown in the last section.
We can calculate UðxÞ explicitly by using these expressions for
the Green’s function in Eq. (8).

The expressions that we have obtained for UðxÞ are quite gen-
eral and are valid for any V1ðxÞ and V2ðxÞ. However, their utility is
limited by the fact that one must know G0

1ðx; x0;xÞ and G0
2ðx; x0;xÞ.

It is possible to find G0
i ðx; x0;xÞ only in a few limited cases and the

Morse oscillator is one of them [41].
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