Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

A novel fluorescent probe for rapid and sensitive detection of hydrogen sulfide in living cells

Jian Pan^{a,b}, Junchao Xu^{a,b}, Youlai Zhang^b, Liang Wang^b, Caiqin Qin^a, Lintao Zeng^{a,b,*}, Yue Zhang^{b,*}

^a Department of Chemistry and Material Sciences, Hubei Engineering University, Hubei, Xiaogan 432000, PR China

^b School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China

ARTICLE INFO

Article history: Received 28 May 2015 Received in revised form 24 May 2016 Accepted 31 May 2016 Available online 2 June 2016

Keywords: Fluorescent probe BODIPY Hydrogen sulfide imaging

1. Introduction

Hydrogen sulfide (H₂S) is an important gaseous transmitter, which is endogenously generated from cystein with the aid of cystathionine β -synthase [1], cystathionine γ -lyase [2], and 3-mercaptopyruvate sulphur transferase [3]. H₂S plays vital roles in various physiological processes, such as modulation of blood pressure [4], reduction of ischemia reperfusion injury [5,6], exertion of anti-inflammatory effects [7] and reduction of metabolic rate [8]. However, aberrant H₂S production is associated with pathological states including Alzheimer's disease [9], Huntington's disease [10], and Parkinson's disease [11]. Thus, visualization of the production and concentration of H₂S within living cells is beneficial to the early diagnose of these diseases.

Fluorescence-based probe is a powerful tool for the detection and visualization of some biological species [12–18] due to its non-invasiveness, high sensitivity, high temporal and spatial resolution [19,20]. Recently, a number of fluorescent probes for H₂S have been developed on the basis of H₂S-mediated reduction of azides [21–23] and nitros [24,25], nucleophilic addition reaction [26,27], Tandem Michael addition reaction [28,29], copper sulfide precipitation [30,31], and thiolysis of dinitrophenyl ether [32,33]. Xian's group has utilized disulfide exchange mechanism to devise some fluorescent probes for H₂S [34–36]. In addition, enzyme-based probe has also been proposed [37]. Although these probes are innovative, they still have some disadvantages, such as excitation/emission in the ultraviolet or visible region [28,33], and long response time (up to 20 min). Excitation/emission in the visible region might be subjected to the interference from background [38,39]. Long

ABSTRACT

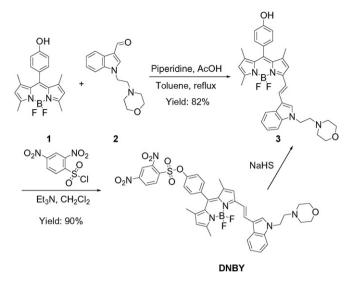
A novel fluorescent probe for H_2S was developed based on a far-red emitting indole-BODIPY, which was decorated with morpholine and 2,4-dinitrobenzenesulfonyl (DNBS) group. This probe showed rapid response ($t_{1/2} = 3$ min), high selectivity and sensitivity for H_2S with significant colorimetric and fluorescence OFF–ON signals, which was triggered by cleavage of 2,4-dinitrobenzenesulfonyl group. This probe could quantitatively detect the concentrations of H_2S ranging from 0 to 60 μ M, and the detection of limit was found to be as low as 26 nM. Cell imaging results indicated that the probe could detect and visualize H_2S in the living cells.

© 2016 Elsevier B.V. All rights reserved.

response time is not suitable for real time analysis and bio-imaging of H_2S due to its transient nature. Therefore, it is highly desired to develop some fluorescent probes with long emission wavelength, rapid response and high sensitivity.

Herein we report a new fluorescent probe for H₂S based on indole-BODIPY fluorophore (Scheme 1). This probe exhibited rapid response to H₂S with good selectivity, long emission wavelength ($\lambda_{em} = 635$ nm) and low detection limit. Moreover, the probe has been successfully used for imaging H₂S in living cells with satisfying results.

2. Experimental Section


2.1. Materials

2,4-Dimethylpyrrole, trifluoroacetic acid (TFA), 2,3-dichloro-5,6dicyano-1,4-benzoquinone (DDQ), 1*H*-indole-3-carbaldehyde, piperidine, 2,4-dinitrobenzenesulfonyl chloride, 4-(2-chloroethyl)morpholine, 4-hydroxybenzaldehyde and triethylamine were purchased from commercial suppliers (Aladdin-Reagent, Sigma-Aldrich, TCI), and used without further purifications. 4,4-difluoro-8- (4hydroxyphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-dia-za-s-indacene and 1-(2-morpholinoethyl)-1*H*-indole-3-carbaldehyde were synthesized according to literatures [39,40].

2.2. Equipments and Methods

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer with tetramethylsilane (TMS) as the internal standard. The chemical shift was recorded in ppm and the following abbreviations

^{*} Corresponding authors. E-mail addresses: zlt1981@126.com (L Zeng), zhang5601@163.com (Y. Zhang).

Scheme 1. Synthetic scheme of the probe DNBY.

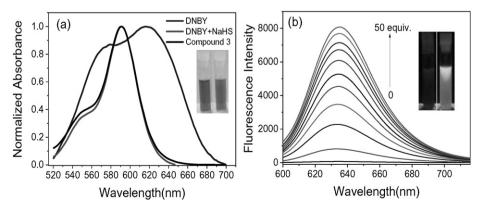
were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. Mass spectra were measured by a HP-1100 LC-MS spectrometer. UV-vis spectra were recorded on a Hitachi UV 3310 spectrometer. Fluorescence spectra were recorded on a Hitachi FL-4700 fluorometer. Fluorescent images were acquired on a Nikon A1 confocal laser-scanning microscope with a $100 \times$ objective lens. Solvents used for UV-vis and fluorescence measurements were of HPLC grade. Column chromatography was performed on silica gel (mesh 200–300), which was purchased from Qingdao Ocean Chemicals Corporation.

2.3. Synthesis and Characterization

2.3.1. Synthesis of Compound 3

4,4-Difluoro-8-(4-hydroxyphenyl)-1,3,5,7-tetramethyl-4-bora-(170.0 mmol). 3a,4a-diaza-s-indacene mg, 0 50 1 - (2 morpholinoethyl)-1*H*-indole-3-carbaldehyde (168.0 mg, 0.65 mmol) and two drops of piperidine were dissolved in 30 mL of toluene. The reaction mixture was heated to 110 °C under nitrogen atmosphere, then two drops of acetic acid were added. The reaction mixture was stirred at 110 °C for 16 h. After the reaction was finished, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography ($CH_2Cl_2/C_2H_5OH = 60/1$) to afford compound **3** as a dark blue solid (179.9 mg, 0.31 mmol, 62%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.82 (s, 1H), 7.93 (s, 2H), 7.79 (d, I = 16.4 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (d, J = 16.4 Hz, 1H), 7.28 (m, 2H), 7.15 (m, 2Hz), 7.1 *J* = 8.2 Hz, 2H), 6.99 (s, 1H), 6.93 (d, *J* = 8.2 Hz, 2H), 6.10 (s, 1H), 4.38 (t, *J* = 5.7 Hz, 2H), 3.56 (s, 4H), 2.70 (s, 2H), 2.48 (s, 6H), 1.50 (s, 3H), 1.42 (s, 3H) · ¹³C NMR (100 MHz, DMSO-*d*₆) δ 158.47, 155.61, 151.25, 143.37, 139.94, 139.55, 137.75, 133.39, 132.80, 131.22, 129.87, 125.95, 125.19, 123.12, 121.52, 120.48, 120.18, 118.27, 116.39, 113.78, 113.59, 111.46, 66.64, 57.99, 53.73, 43.49, 15.01, 14.73, 14.47. HR-MS (ESI): calcd for C₃₄H₃₅BF₂N₄O₂ + H 581.2905; Found 581.2906.

2.3.2. Synthesis of Compound DNBY


Compound 3 (81.0 mg, 0.14 mmol) and triethylamine (60.0 µL, 0.35 mmol) were dissolved in 20 mL of anhydrous CH₂Cl₂. To this solution, 2,4-dinitrobenzenesulfonyl chloride (74 mg, 0.28 mmol) in 2 mL of anhydrous CH₂Cl₂ was added dropwise in 0.5 h at 0 °C. Then, the temperature was raised to 40 °C, and the reaction mixture was stirred for 2 h. After the reaction completed, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography $(CH_2Cl_2/C_2H_5OH = 100/1)$ to afford the probe **DNBY** as a dark blue solid (70.0 mg, 0.09 mmol, 64%). ¹H NMR (400 MHz, DMSO d_6) δ 9.15 (d, J = 2.0 Hz, 1H), 8.60 (dd, J = 8.7, 2.2 Hz, 1H), 8.17 (d, J = 8.7 Hz, 1H), 7.96 (s, 1H), 7.94 (d, J = 6.9 Hz, 1H), 7.84 (d, J =15.1 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.56-7.34 (m, 6H), 7.28 (m, 2H), 7.05 (s, 1H), 6.12 (s, 1H), 4.38 (s, 2H), 3.55 (s, 4H), 2.70 (s, 2H), 2.48 (s, 6H), 1.35 (s, 3H), 1.28 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.42, 152.06, 151.64, 149.39, 148.67, 143.12, 139.43, 137.77, 136.54, 135.13, 134.34, 133.72, 132.79, 131.39, 130.57, 130.33, 127.70, 125.99, 123.33, 123.22, 121.62, 120.78, 120.18, 118.90, 113.87, 113.35, 111.52, 66.46, 57.78, 53.62, 43.30, 15.05, 14.72, 14.46. HR-MS (ESI): calcd for $C_{40}H_{37}BF_2N_6O_8S + H 811.2533$; Found 811.2532.

2.3.3. Conversion of Compound DNBY by NaHS

NaHS (10.0 mg, 0.18 mmol) and compound **DNBY** (30.0 mg, 0.037 mmol) were dissolved in 3.0 mL absolute ethanol at room temperature. 30 min later, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography ($CH_2Cl_2/C_2H_5OH = 60/1$) to give a dark blue solid (11.6 mg, 0.02 mmol, 54%).

2.4. Fluorescence Analysis

The solutions of various testing species were prepared from CaCl₂, MgCl₂, KI, NaCl, KBr, NaF, NaN₃, Na₂SO₄, Na₂SO₃, CH₃COONa, NaH₂PO₄, GSH, Cys, Hcy, H₂O₂ in double-distilled water. Hydroxyl radicals were generated from the reaction of Fe²⁺ with H₂O₂. Singlet oxygen (¹O₂) was generated from ClO⁻ and H₂O₂. The stock solution of **DNBY** (10 μ M) was prepared in 10 mM PBS buffer solution (pH 7.4) with 30% fraction of ethanol. For all measurements, the excitation wavelength was 560 nm, the excitation and emission slit widths were 5 nm.

Fig. 1. (a) Absorption spectra of **DNBY** (10 μ M) in the absence (blue line) or presence (red line) of NaHS (500 μ M) in PBS aqueous solution (C₂H₅OH/PBS = 3:7, pH 7.4). Inset: color changed from blue to red. (b) Fluorescence spectra changes of **DNBY** (10 μ M) upon the addition of NaHS (0–500 μ M) in PBS aqueous solution (C₂H₅OH/PBS = 3:7, pH 7.4). Slits: 5/5 nm.

Download English Version:

https://daneshyari.com/en/article/1230418

Download Persian Version:

https://daneshyari.com/article/1230418

Daneshyari.com