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h i g h l i g h t s

� To develop synchronize fluorescence
spectroscopic method.
� To analyze sunflower adulteration in

extra virgin olive oil.
� To build Partial least-squares

discriminant analysis (PLS-DA)
models.
� To check the effect of thermal

treatment on the enhancement of
discrimination.
� To build PLS regression models to

quantify the unknown level of
adulteration in extra virgin olive.
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Thermal oxidation process accelerates degradation of the olive oil mixed 
with sunflower oil and enables its discrimination using synchronous 

fluorescence spectroscopy and chemometric analysis

SPECTROSCOPIC ANALYSIS

• Synchronize Flourescence (SyF)

CHEMOMETRIC ANALYSIS

• Principal Component 
Analysis  (PCA)

• Partial Least Squares
Discriminant Analysis (PLS-DA)

• Partial Least Squares
Regression (PLS)  
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a b s t r a c t

We have investigated the effect of thermal treatment on the discrimination of pure extra virgin olive oil
(EVOO) samples from EVOO samples adulterated with sunflower oil. Two groups of samples were used.
One group was analyzed at room temperature (25 �C) and the other group was thermally treated in a
thermostatic water bath at 75 �C for 8 h, in contact with air and with light exposure, to favor oxidation.
All samples were then measured with synchronous fluorescence spectroscopy. Fluorescence spectra were
acquired by varying the excitation wavelength in the region from 250 to 720 nm. In order to optimize the
differences between excitation and emission wavelengths, four constant differential wavelengths, i.e.,
20 nm, 40 nm, 60 nm and 80 nm, were tried. Partial least-squares discriminant analysis (PLS-DA) was
used to discriminate between pure and adulterated oils. It was found that the 20 nm difference was
the optimal, at which the discrimination models showed the best results. The best PLS-DA models were
those built with the difference spectra (75–25 �C), which were able to discriminate pure from adulterated
oils at a 2% level of adulteration. Furthermore, PLS regression models were built to quantify the level of
adulteration. Again, the best model was the one built with the difference spectra, with a prediction error
of 1.75% of adulteration.

� 2015 Elsevier B.V. All rights reserved.

Introduction

Extra virgin olive oil (EVOO) due to its high price, fine aroma,
pleasant taste and health benefits is a target for adulteration with
low price/quality oils such as sunflower, rapeseed, soybean and
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walnut oils as well as low quality olive oils, such as olive-pomace
oils [20,19]. Adulteration is a major issue in the olive oil market
and its detection is important for the protection of wealth and
health of consumers. Consumer, buying such a product is not only
buying the product of lower quality for higher price but also a pro-
duct with a shorter shelf-life.

Various methods like spanning from classic wet chemistry [7]
to chromatographic methods relying on quantification of fatty
acids, triglycerols, sterols and hydrocarbons [1,2] were used. More
recently, spectroscopic techniques, combined with multivariate
analysis, have also been used to detect adulteration [9–11].
Amongst these spectroscopic techniques are nuclear magnetic
resonance (NMR) [6,12] and vibrational techniques [3–5]. Molecu-
lar fluorescence spectroscopy is a highly sensitive technique, used
for the characterization of edible oils. Very early work pointed out
good prospects for characterization of edible oils through fluorime-
try [22,8]. However, molecular fluorescence may not be suitable for
the analysis of complex multi-component samples without prior
separation, due to severe overlaps of excitation and emission
bands. In such cases, synchronous fluorescence (SyF) could prove
beneficial as both the excitation and emission monochromators
are scanned simultaneously in such a manner that a constant
wavelength interval is kept between emission and excitation
wavelengths (Dk). Using suitable Dk, SyF reduces spectral overlaps
by narrowing spectral bands and simplifies the spectra [13–15,21].
Synchronous fluorescence (SyF) spectra are obtained by plotting
fluorescence intensity as a combined function of the excitation
wavelength and the wavelength interval [23]. In this way, spectra
selectivity is increased. Recently, a SyF method was described for
the classification of edible and lampante olive oils [16–18,25].

All types of olive oil (including extra virgin) contain a large
amount of monounsaturated fat. In fact, 70–80% of the total fat found
in olive oil is monounsaturated. This monounsaturated fat comes
from oleic oil, a monounsaturated fatty acid (MUFA). Olive oil is fair-
ly unique in its high MUFA content. Canola oil comes close (60–70%
MUFA), but many of the other common vegetable oils, including sun-
flower, corn and soybean oils, naturally contain less than half MUFA
than olive oil. In general, monounsaturated fat increases the stability
of a vegetable oil in comparison to polyunsaturated fat. This
increased stability is related to the chemical structure of monoun-
saturated fat. MUFAs have fewer ‘‘reactive spots’’ than PUFAs
(polyunsaturated fatty acids) and it is more difficult for oxygen radi-
cals to interact with them. However, despite this lower reactivity,
olive oil and other vegetable oils containing a high amount of MUFAs
(like canola oil) still have relatively low smoke points and cannot
withstand a large amount of heat. Unless these high-MUFA oils have
been refined or conditioned in a way that increases their smoke
point, they typically cannot withstand heats of much greater than
200–250 �F (93–121 �C) without incurring damage (the temperature
of stove-top frying is 375–525 �F, or 191–274 �C). So even though the
high-MUFA composition of extra virgin olive oil increases its chemi-
cal stability, it does not protect it from most stovetop or oven cook-
ing temperatures [24]. The presence of other vegetable oils in EVOO
as adulterants also may change this stability against temperature.

In this study the effect of temperature and oxidation on
monounsaturated and polysaturated fatty acids has been used to
enable a better discrimination between EVOOs and EVOOs adulter-
ated with sunflower oil, using SyF spectroscopy and PLS-DA and
PLS regression.

Materials and methods

Samples

Eleven extra virgin olive oil (EVOO) samples from PDO Siurana
(Tarragona, Catalonia) were used. The EVOOs were purchased at

the cooperatives to guarantee their traceability and quality. The
11 EVOOs samples were then adulterated with two types of sun-
flower oil at four different percentage levels: 2%, 5%, 10% and
20%. The total number of samples used was 99: 11 pure, 44 adul-
terated with SF1 and 44 adulterated with SF2. The samples were
prepared by duplicate. One group of 99 samples was kept at room
temperature (25 �C) and the other group of 99 samples was kept in
a water bath at 75 �C for 8 h, in contact with air and with light
exposure, to favor oxidation.

Fluorescence measurements

Fluorescence spectra were acquired with an AMINCO-Bowman
Series 2 Luminescence Spectrometer (Thermo Electron Scientific
Instrument Corporation) including the AB2 Series2 software. This
is a fully computer controlled instrument using a double-grating
monochromator for excitation and a single-grating emission
monochromator. Excitation and emission slit widths were set at
2 nm. The acquisition interval and integration time were main-
tained at 1 nm and 60 s, respectively. A xenon lamp 950 W and a
quartz cell 1 � 10 � 45 mm were used. Right-angle geometry was
used for spectral acquisition.

SyF spectra were collected by simultaneously scanning the exci-
tation and emission monochromator in the excitation wavelength
range from 250 to 720 nm. SyF spectra were obtained by measur-
ing the excitation wavelength in the same spectral region and
varying the wavelength interval from 20 to 80 nm keeping 20 nm
difference of wavelength interval.

Statistical analysis

Microsoft Excel 2010 and The Unscrambler version 9.0 by Camo
were used for statistical analysis. The PLS-DA and PLS regression
models were built at four different wavelength intervals i.e.,
20 nm, 40 nm, 60 nm and 80. For some models spectral pretreat-
ments, such as baseline correction, Savitzky–Golay smoothing
and normalization, were carried. Leave-one-out cross validation
was used to validate the PLS-DA models. For PLS regression all
the samples (both adulterated with SF1 and SF2) were joined
together and split into two sets, a training set (70% of the samples)
and a test set for validation (30% of the samples). Leave-one-out
cross validation was used to validate the PLS regression models
built with the training set. The Root Mean Square Error of Cross
Validation (RMSECV) was used as an internal indicator of the pre-
dictive ability of the models. RMSECV is calculated using Eq. (1):

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðyi � ŷiÞ2

n

vuuut
ð1Þ

where yi is the measured value (actual % of adulteration), ŷi is the %
of adulteration predicted by the model, and n is the number of seg-
ments left-out in the cross-validation procedure, which is equal to
the number of samples of the training set. Smaller values of
RMSECV are indicative of a better prediction ability of the model.

The RMSEP is a statistical measure how well the model predicts
new samples (not used when building the model). It is calculated
using Eq. (2):

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnt

i¼1

ðyt;i � ŷt;iÞ2

nt

vuuuut ð2Þ

where yt,i is the measured value (actual % of adulteration), ŷt;i is the
% of adulteration predicted by the model, and nt is the number of
samples in the test set. RMSEP expresses the average error to be
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