

Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

Synthesis, crystal structure and luminescent properties of one coordination polymer of cadmium(II) with mixed thiocyanate and hexamethylenetetramine ligands

Yan Bai, Wei-Li Shang, Dong-Bin Dang*, Ji-De Sun, Hui Gao

Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China

ARTICLE INFO

Article history: Received 30 June 2008 Accepted 10 October 2008

Keywords: Cd(II) coordination polymer Crystal structure Luminescent properties

ABSTRACT

A novel Cd(II) coordination polymer $[Cd(SCN)_2(hmt)_{1/2}(H_2O)]_2 \cdot H_2O$ (hmt = hexamethylenetetramine) has been synthesized and characterized by IR, elemental analysis, TG technique and X-ray crystallography. Cd(II) atom has an distorted octahedral environment with an N₃S₂O donor set. Every six Cd(II) centers are linked by hmt and thiocyanato bridges to form a planar 2D coordination polymer containing hexagonal metallocyclic rings $[Cd_6(SCN)_8(hmt)_2]$. A 2D layer structure is held together with its neighboring ones via a set of hydrogen-bonding interactions to form a 3D supramolecular structure. The luminescent properties of the title complex in the solid state were investigated.

© 2008 Elsevier B.V. All rights reserved.

SPECTROCHIMICA

1. Introduction

Much interest at present is focused on the deliberate construction of coordination polymers by self-assembly of the component metal complexes [1]. These solid materials are attractive to chemists not only for the variety of topologies and intriguing frameworks, but also for their interesting electric, magnetic, catalytic and optical properties [2]. Among them, the incorporation of Cd(II) in the fascinating metal-based supramolecular architectures is of great interest in view of their appealing structures and photoluminescent properties, which should lead to new functional materials [3]. Much effort has been devoted to the design of Cd(II)-containing coordination polymers owing to the ability to form bonds with different donors simultaneously, the large radius, various coordination modes and special physical properties of Cd(II) ion [4,5]. These complexes display a variety of different structural motifs, such as one dimensional helical ribbon or molecular zippers, two dimensional molecular squares or triangular grids, and penetrating and non-penetrating three-dimensional networks [6].

As we know, the crystal engineering of coordination polymers are usually achieved by the reactions of metal ions with organic molecules such as bi-, tri- and multidentate neutral or anionic organic linkers such as 4,4-bipyridine (BPY), hexamethylenetetramine (hmt) and thiocyanate, benzene-1,3,5-tricarboxylate (BTC) [7–9]. Hexamethylenetetramine, a potential tetradentate neutral organic ligand, has been used to assemble new supramolecular architectures with metal ions via various possible coordination modes, namely, involving one to four N atoms of hmt in coordination [10–12]. Among the anionic ligands, one of the best bridging ligands is ambidentate SCN⁻, which tends to link metal ions such as Cd(II) with both N and S atoms to form dimensional structures [13]. Herein it is attempted to synthesize a Cadmium complex containing the hmt and SCN⁻ multiligands, we report the synthesis, crystal structure and the luminescent properties of a novel two-dimensional coordination polymer [Cd(SCN)₂(hmt)_{1/2}(H₂O)]₂·H₂O (**1**).

2. Experimental

2.1. Physical measurements

Elemental analyses (C, H and N) were carried out on a PerkinElmer 240C analytical instrument. IR spectra were recorded in KBr pellets with a Nicolet 170 SXFT-IR spectrophotometer in the 4000–400 cm⁻¹ region. The thermogravimetric analysis was carried out under nitrogen condition on a PerkinElmer-7 thermal analyzer at a heating rate of 10 °C/min from 25 to 1000 °C, and the luminescent spectra were performed on an F-7000 spectrometer.

2.2. Materials

All the chemicals were reagent grade and used without further purification.

^{*} Corresponding author. Tel.: +86 378 3881589; fax: +86 378 3881589. *E-mail address*: dangdb@henu.edu.cn (D.-B. Dang).

^{1386-1425/\$ –} see front matter $\ensuremath{\mathbb{C}}$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2008.10.033

Table 1

Crystallographic data and structure refinement for complex 1.

Crystal data	
Chemical formula	$2(C_5H_8CdN_4OS_2)H_2O$
Color	Colourless
Formula weight	651.36
Cell setting, space group	Orthorhombic, Aba2
a (Å)	15.174(3)
b (Å)	10.707(2)
<i>c</i> (Å)	12.854(3)
Volume (Å ³)	2088.4(7)
Ζ	4
$Dx (Mg m^{-3})$	2.072
Crystal size (mm)	$0.20\times0.15\times0.10$
Radiation (Å)	Μο Κα 0.71073
Theta Min.–Max. (°)	2.82-25.49
Tot., Uniq. Data, R(int)	4832, 1879, 0.0362
Observed data [I > 2.0 sigma(I)]	1863
Nref, Npar	1879, 125
R, wR2, S	0.0362, 0.1003, 1.02
Flack x	0.06(5)
Min. and Max. Resd. Dens. [e/Ang3̂]	-1.46, 0.90

2.3. Preparation of the title complex

A 10-mL aqueous solution of 3CdSO₄·8H₂O (0.513 g, 0.67 mmol) and KSCN (0.388 g, 4 mmol) were mixed, and was slowly added to a 3-mL aqueous solution of hmt (0.140 g, 1 mmol). After stirring for 30 min, the mixture was filtrated and left for slowly evaporating at room temperature to obtain colorless block crystals suitable for X-ray structure determination. Yield: 60%. Anal. Calcd. for C₁₀H₁₈Cd₂N₈O₃S₄ (%): C, 18.44; H, 2.78; N, 17.20. Found (%): C, 18.26; H, 2.92; N, 17.28.

2.4. Crystallographic data collection and refinement

A suitable sample of size $0.20 \text{ mm} \times 0.15 \text{ mm} \times 0.15 \text{ mm}$ was chosen for the crystallographic study and then mounted on a Bruker APEX II CCD diffractometer with ω and φ scan mode in the range of $2.82^{\circ} < \theta < 25.49^{\circ}$. All diffraction measurements were performed at room temperature using graphite monochromatized Mo Kα radiation (λ = 0.71073 Å). A total of 4832 (1879 independent, $R_{\text{int}} = 0.0362$) reflections were measured. The structure was solved by direct methods and refined by full-matrix least squares on F^2 using SHELXL 97 program [12]. All the non-hydrogen atoms were refined with anisotropic temperature factors. The hydrogen atoms were placed in calculated positions. Structure solution and refinement based on 1863 independent reflections with $I > 2\sigma(I)$. Space group, lattice parameters and other relevant information are listed in Table 1.

3. Results and discussion

3.1. Synthesis

In order to extend our research, we vary the hmt concentration keeping other constituents constant. It has been observed that when the cadmium: hmt molar ratio is varied between 1:0.25-1:4 every other 0.25, we obtain these compounds which were revealed by IR spectra and X-ray structure determination. Ultimately, It indicated that they are the same complex 1. In addition, we also use the triethylamine regulate solution pH between 1 and 12 every other 1 pH, we obtain compounds which are also the same product **1**. In other words, in this synthesis method, the title complex is not influenced by the reaction molar ratio and the pH. It indicated that the title complex is very stable.

Table 2		
Selected bond distances (Å) and bond angles ((°) for complex 1.

Bond length (Å)			
Cd(1)—S(2)	2.7098(16)	Cd(1)—O(1)	2.349(4)
Cd(1)—N(1)	2.281(5)	Cd(1)—N(3)	2.447(4)
Cd(1)—S(1A)	2.7059(15)	Cd(1)—N(2A)	2.269(5)
Bond angle (°)			
S(2) - Cd(1) - O(1)	178.32(10)	S(2)—Cd(1)—N(1)	93.32(12)
S(2)—Cd(1)—N(3)	96.19(10)	S(1A)—Cd(1)—S(2)	94.50(6)
S(2)—Cd(1)—N(2A)	94.28(19)	O(1) - Cd(1) - N(1)	86.88(16)
O(1)-Cd(1)-N(3)	85.49(13)	S(1A)-Cd(1)-O(1)	83.83(10)
O(1)-Cd(1)-N(2A)	85.6(2)	N(1)-Cd(1)-N(3)	85.14(17)
S(1A)— $Cd(1)$ — $N(1)$	88.49(15)	N(1)— $Cd(1)$ — $N(2A)$	172.3(2)
S(1A)-Cd(1)-N(3)	167.84(10)	N(2A)-Cd(1)-N(3)	92.88(18)
S(1A)-Cd(1)-N(2A)	92.08(17)	Cd(1B)— $S(1)$ — $C(1)$	98.6(2)
Cd(1) - S(2) - C(2)	99.9(2)	Cd(1) - N(1) - C(1)	159.4(4)
Cd(1B) - N(2) - C(2)	162.5(6)	C(2)-N(2)-Cd(1A)	162.5(6)
S(2)—C(2)—N(2)	177.6(7)	S(1) - C(1) - N(1)	179.5(6)

Symmetry code—A: 1/2-*x*, 1/2 + y, *z*; B: 1/2-*x*, -1/2 + *y*, *z*.

3.2. IR spectra

In the IR spectrum of the title complex, a sharp and strong ((SCN) absorption band at 2100 cm⁻¹ and a shoulder at 2096 cm⁻¹ in the complex show the coordination of SCN⁻ anion with a $1,3-\mu$ bridge mode, which agrees well with the relevant compounds [7]. The complex **1** shows several bands in the range 2880–2990 cm⁻¹ which is assigned to the aliphatic ((CH) stretching vibrations of hmt [12]. The strong broad band at 3550–3350 cm⁻¹ are assigned as the ((OH) stretching frequency of the coordination water and crystal water molecules.

3.3. Description of the crystal structure of compound 1

Complex **1** crystallizes in the orthorhombic space group *Aba*2. An ORTEP diagram of the complex **1** with the atomic numbering scheme and the coordination geometry of Cd atoms are depicted in Fig. 1. The asymmetry unit consists of a $Cd(SCN)_2(hmt)_{1/2}(H_2O)$ structure units and one lattice water molecule. The Cd(II) atom is surrounded by two S atoms, three N atoms and one O atom, in which two S atoms and two N atoms from four di-µ-1,3-SCN⁻ bridges ligands, one N atom from hmt and the O atom from coordinated

Fig. 1. ORTEP drawing of the complex with the atom numbering scheme and the octahedral geometry of Cd1. The atoms are represented by 30% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity (symmetry codes: A: 1/2-x, 1/2 + v, z; B; 1/2 - x, v - 1/2, z; C; -x, 1 - v, z).

Download English Version:

https://daneshyari.com/en/article/1233649

Download Persian Version:

https://daneshyari.com/article/1233649

Daneshyari.com