

Contents lists available at ScienceDirect

## Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy



journal homepage: www.elsevier.com/locate/saa

# Fourier transform infrared and FT-Raman spectra, assignment, *ab initio*, DFT and normal co-ordinate analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline

### V. Arjunan<sup>a,\*</sup>, S. Mohan<sup>b</sup>

<sup>a</sup> Department of Chemistry, Kanchi Mamunivar Centre for Post-Graduate Studies, Puducherry 605 008, India
<sup>b</sup> Centre for Research and Development, PRIST University, Vallam, Thanjavur 613 403, India

#### ARTICLE INFO

Article history: Received 27 February 2008 Received in revised form 30 September 2008 Accepted 17 October 2008

Keywords: Chloromethylaniline DFT *ab initio* FTIR FT-Raman

## 1. Introduction

Hormonic force fields of polyatomic molecules play a vital role in the interpretation of vibrational spectra and in the prediction of other vibrational properties. Aniline and its derivatives have been widely used as starting materials in a vast amount of chemicals, pharmaceuticals, dyes, electro-optical and many other industrial processes. The conducting polymer of aniline namely polyaniline is used in microelectronic devices as diodes and transistors [1–4]. The understanding of their structure, molecular properties as well as nature of reaction mechanism they undergo has great importance and has been the subject of many experimental and theoretical studies. A systematic study on the vibrational spectra of simple primary, secondary and tertiary amines received considerable attention in the spectroscopic literature in view of their obvious importance to biological systems and industrial significance. Studies of intermolecular associations, dichroic absorption, band contour of the vapour spectra, measurements of integrated intensities of the absorption bands and theoretical ab initio and normal co-ordinate analysis give information regarding the nature of the functional groups, orbital interactions and mixing of skeletal frequencies. Hence, the investigation on the structure and fun-

#### ABSTRACT

The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-4-methylaniline and 2-chloro-6methylaniline have been measured in the range 4000–400 and 4000–100 cm<sup>-1</sup>, respectively. Utilising the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out. The vibrational frequency which were determined experimentally are compared with those obtained theoretically from *ab initio* HF and DFT gradient calculations employing the HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods for optimised geometries. The geometries and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal co-ordinate analysis was also carried out on the basis of *ab initio* force fields utilising Wilson's FG matrix method. The manifestations of NH– $\pi$  interactions and the influence of bulky chlorine and methyl group on the vibrational modes of the amino group are investigated.

© 2008 Elsevier B.V. All rights reserved.

damental vibrations of aniline and its derivatives are still being carried out, increasingly [5–19]. The inclusion of a substituent in aniline leads to the variation of charge distribution in the molecule, and consequently affects the structural, electronic and vibrational parameters [18]. The electron donating methyl group interacts with nearby  $\pi$  systems through hyper conjugation, while the  $-NH_2$ shares its lone pair electrons with the ring. Both the effects imply electronic delocalisation and are taken into account by the molecular orbital approach [14,17]. The position of the substituents in the benzene ring as well as its electron donor/acceptor capabilities plays a very important role on the structural and electronic properties of the molecules.

The Hartree–Fock (HF) level *ab initio* calculations have been performed to analyse the structural and vibrational characteristics of molecules. However, the use of post-HF level calculations, which include electronic correlation to the calculations, is necessary to get more reliable results on the structural parameters and vibrational properties. Recently, density functional theory (DFT) has been accepted as a popular post-HF approach for the computation of molecular structures, vibrational frequencies and energies of molecules by the *ab initio* quantum chemistry community [20]. Vaschetto et al. [18] showed that the DFT calculations with the hybrid exchange-correlation functional B3LYP (Becke's three parameter (B3) exchange in conjunction with the Lee-Yang-Parr's (LYP) correlation functional) have been proved to be very effective [21,22] for vibrational studies on aniline [23], m-methylaniline

<sup>\*</sup> Corresponding author. Tel.: +91 413 2211111. E-mail address: varjunftir@yahoo.com (V. Arjunan).

<sup>1386-1425/\$ –</sup> see front matter  $\ensuremath{\mathbb{C}}$  2008 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2008.10.017

[24] and 4-fluoraniline [15] and show better agreement with the experimental values of structural characteristics of aniline and its derivatives than the calculations containing the gradient corrected exchange functional [25].

Few reports are available on infrared and Raman studies of anilines and its derivatives, but the vibrational spectroscopic analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline has not been carried out. Thus, in the present investigation, owing to the industrial importance of substituted anilines, an extensive spectroscopic studies of 2-chloro-4-methylaniline (2C4MA) and 2-chloro-6-methylaniline (2C6MA) have been undertaken by recording their FTIR and FT-Raman spectra and subjecting them to normal co-ordinate analysis, in an effort to provide possible explanations for the experimentally observed vibrational fundamentals and to understand the effect of halogen and methyl group substitution on the characteristic frequencies of the amino group. In order to obtain the optimised structural parameters, vibrational frequencies, the energy differences among the compounds under study, the

Table 1

Structural parameters calculated for 2-chloro-4-methylanline (2C4MA) and 2-chloro-6-methylanline (2C6MA) employing HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods.

| Structural parameters       | 2C4MA         |                  | 2C6MA         |                |
|-----------------------------|---------------|------------------|---------------|----------------|
|                             | HF/6-31G(d,p) | B3LYP/6-31G(d,p) | HF/6-31G(d,p) | B3LYP/6-31G(d, |
| Internuclear distance (Å)   |               |                  |               |                |
| C1-C2                       | 1.3760        | 1.3891           | 1.3820        | 1.3947         |
| C2—C3                       | 1.3936        | 1.4019           | 1.3875        | 1.3956         |
| C3—C4                       | 1.3817        | 1.3974           | 1.3778        | 1.3921         |
| C4—C5                       | 1.3866        | 1.3922           | 1.3837        | 1.3912         |
| C5-C6                       | 1.3875        | 1.4054           | 1.3909        | 1.4065         |
|                             |               |                  |               |                |
| C6-C1                       | 1.3979        | 1.4073           | 1.4061        | 1.4171         |
| C5—Cl(8)                    | 1.7519        | 1.7684           | 1.7533        | 1.7697         |
| C6—N7                       | 1.3866        | 1.3889           | 1.3875        | 1.3892         |
| C3—C9                       | 1.5108        | 1.5106           |               |                |
| С1—С9                       |               |                  | 1.5101        | 1.5084         |
| C—H (ring) <sup>a</sup>     | 1.0760        | 1.0863           | 1.0739        | 1.0853         |
| C—H (methyl) <sup>a</sup>   | 1.0854        | 1.0953           | 1.0858        | 1.0962         |
| N—H (amino) <sup>a</sup>    | 0.9947        | 1.0106           | 0.9942        | 1.0100         |
| ond angle (degree)          |               |                  |               |                |
| C6-C1-C2                    | 121.4443      | 121.5104         | 119.3373      | 119.3711       |
| C1-C2-C3                    | 121.5628      | 121.5623         | 121.8511      | 121.8129       |
|                             |               |                  |               |                |
| C2-C3-C4                    | 117.3038      | 117.4356         | 119.1313      | 119.3253       |
| C3—C4—C5                    | 121.1406      | 120.9290         | 119.5711      | 119.3473       |
| C4—C5—C6                    | 121.9172      | 122.1578         | 122.1253      | 122.3329       |
| C5-C6-C1                    | 116.6313      | 116.4045         | 117.982       | 117.8098       |
| C5-C6-N7                    | 122.8170      | 122.3229         | 121.9083      | 121.6711       |
| C1-C6-N7                    | 120.5061      | 121.2065         | 120.0564      | 120.4582       |
| C4-C5-Cl(8)                 | 118.3888      | 118.8699         | 118.2187      | 118.7839       |
| C6-C5-Cl(8)                 | 119.6938      | 118.9721         | 119.6561      | 118.8826       |
| C4—C3—C9                    | 121.5786      | 121.1754         | 115:0501      | 110.0020       |
|                             | 121.1175      |                  |               |                |
| C2-C3-C9                    | 121.11/5      | 121.3796         | 110 011       | 110 1010       |
| C6—C1—C9                    |               |                  | 119.811       | 119.4010       |
| C2-C1-C9                    |               |                  | 120.8488      | 121.2255       |
| C6-C1-H10                   | 118.7020      | 118.5489         |               |                |
| C2-C1-H10                   | 119.8517      | 119.9370         |               |                |
| C1-C2-H11                   | 118.8686      | 118.9378         |               |                |
| C3—C2—H11                   | 119.5686      | 119.4998         |               |                |
| C3—C4—H12                   | 120.3926      | 120.3259         | 121.1377      | 121.2859       |
|                             |               |                  |               |                |
| C5-C4-H12                   | 118.4667      | 118.7449         | 119.2909      | 119.3662       |
| C2-C3-H11                   |               |                  | 120.5820      | 120.5848       |
| C4-C3-H11                   |               |                  | 120.2864      | 120.0897       |
| C1-C2-H10                   |               |                  | 118.7606      | 118.5132       |
| C3-C2-H10                   |               |                  | 119.3872      | 119.6735       |
| C6-N7-H13                   | 114.6122      | 115.0707         | 115.2813      | 115.6043       |
| C6—N7—H14                   | 115.626       | 115.3511         | 115.2813      | 115.0984       |
| $H = N = H (amino)^a$       | 112.4474      | 113.0105         | 112.2178      | 112.9822       |
| , ,                         |               |                  |               |                |
| $C-C-H (methyl)^a$          | 111.2608      | 111.4642         | 111.2630      | 111.4967       |
| H—C—H (methyl) <sup>a</sup> | 107.6446      | 107.6214         | 107.6214      | 107.3728       |
| ihedral angle (degree)      | 170 70 11     | 170 (120         | 170 7000      | 150 4504       |
| Cl(8)—C5—C4—C3              | 179.7841      | 179.6122         | 179.7338      | 179.4781       |
| Cl(8)-C5-C6-C1              | -179.7805     | -179.6305        | 179.8866      | 179.6571       |
| Cl(8)-C5-C6-N7              | 2.6672        | 3.2975           | 2.5395        | 3.1719         |
| N7-C6-C5-C4                 | -177.5176     | 176.8749         | -177.4742     | -177.1182      |
| C5-C6-N7-H13                | -155.8984     | -156.7723        | -150.1603     | -152.9471      |
| C5-C6-N7-H14                | -22.6196      | -22.4102         | -16.8125      | -18.3138       |
| C1-C6-N7-H13                | 26.6412       | 26.2940          | 32.5464       | 29.9548        |
|                             |               |                  |               |                |
| C1-C6-N7-H14                | 159.9200      | 160.6561         | 165.8942      | 164.5881       |
| C3-C2-C1-H10                | 179.4657      | 179.3797         |               |                |
| C4-C3-C2-H11                | 180.0034      | 179.8275         |               |                |
| H10-C1-C2-H11               | -0.5197       | -0.5465          |               |                |
| C4-C3-C2-H10                |               |                  | 179.6311      | 179.8191       |
| C2-C3-C4-H12                |               |                  | 179.8962      | 179.9165       |
| H11-C3-C4-H12               |               |                  | -0.1021       | -0.2312        |
|                             |               |                  | -0.1021       | -0.2512        |

<sup>a</sup> Mean value.

Download English Version:

https://daneshyari.com/en/article/1233654

Download Persian Version:

https://daneshyari.com/article/1233654

Daneshyari.com