

Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Theoretical studies of the g factors and local structure for the tetragonal Nd^{3+} center in $SrTiO_3$

Hui-Ning Dong^{a,*}, Peng Li^b

^a Institute of Applied Physics and College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China ^b Department of Physics, Sichuan University, Chengdu 610064, PR China

ARTICLE INFO

Article history: Received 13 November 2009 Received in revised form 15 February 2010 Accepted 26 February 2010

Keywords: Electron paramagnetic resonance Defect structures Crystal and ligand-field theory Nd³⁺ SrTiO₃

and the charge compensator.

1. Introduction

ABSTRACT

The anisotropic g factors $g_{||}$ and g_{\perp} and the local structure for the tetragonal Nd³⁺ center in SrTiO₃ are theoretically studied using the perturbation formulas of the g factors for a 4f³ ion in tetragonal symmetry. This center is attributed to the impurity Nd³⁺ occupying the dodecahedral Sr²⁺ site in SrTiO₃, associated with one nearest neighbour interstitial oxygen O₁ along [0 0 1] (or C₄) axis. The impurity Nd³⁺ is found to suffer the large displacement (\approx 1.1 Å) towards the O₁ along the C₄ axis due to their strong interaction. The calculated g factors based on the above impurity axial displacement show reasonable agreement with the experimental results.

© 2010 Elsevier B.V. All rights reserved.

2. Calculation

When Nd³⁺ is doped into the lattice of SrTiO₃, it can occupy the dodecahedral Sr²⁺ site because of their similar ionic radii. Since the impurity Nd³⁺ has extra charge as compared with the host Sr²⁺, one nearest neighbour interstitial oxygen (labeled as O₁) may occur along [0 0 1] (or C₄) axis as the charge compensator and thus form a tetragonally (C_{4v}) distorted dodecahedral [NdO₁₃]^{23–} cluster. Similar tetragonal impurity center (i.e., [FeO₁₃]^{23–} cluster) was also reported for Fe³⁺ on the dodecahedral K⁺ site in KTaO₃ [12]. In view of the strong electrostatic interaction and chemical bonding between the Nd³⁺ and the negative O₁, the impurity Nd³⁺ is expected to suffer a displacement (labeled as ΔZ) towards the compensator along the C₄ axis. Thus, the local structure of this tetragonal center can be described by the impurity displacement ΔZ .

For an Nd³⁺(4f³) ion under tetragonal symmetry, the ground ${}^{4}I_{9/2}$ configuration would be separated into five Kramers doublets via the combination of the spin–orbit coupling and tetragonal crystal–field interactions. To study the EPR spectra and the local structure for SrTiO₃:Nd³⁺, the perturbation formulas of the *g* factors for a 4f³ ion under tetragonal symmetry are adopted [13]:

$$g_{//}=2g_{J} < \Gamma_{\gamma}|\hat{J}_{z}|\Gamma_{\gamma} > +2\sum_{X}' \frac{<\Gamma_{\gamma}|\hat{H}_{CF}|\Gamma_{X}\gamma_{X} > <\Gamma_{X}\gamma_{X}|\hat{J}_{z}|\Gamma_{\gamma} >}{E(\Gamma_{X}) - E(\Gamma)},$$

$$g_{\perp}=g_{J} < \Gamma_{\gamma}|\hat{J}_{+}|\Gamma_{\gamma'} > .$$
(1)

here g_J are the Landé factors for various ${}^{2S+1}L_J$ configurations, which are given in Refs. [14,15]. The operator $\hat{J}_+(=\hat{J}_X + i\hat{J}_Y)$ stands for the

SrTiO₃ doped with Nd³⁺ has aroused interest of researchers due

to the unique thermoelectric, [1] luminescence [2-4] and electronic structure [5] properties as well as the applications of the substrates for the high- T_c superconductor films [6,7]. In general, these proper-

ties are closely related to the local structure and electronic states of

the impurity ion in the host, which can be effectively investigated

by means of electron paramagnetic resonance (EPR) technique. For

instance, EPR studies were measured for Nd³⁺ doped SrTiO₃, and the

gyromagnetic factors $g_{||}$ and g_{\perp} were determined for the tetrago-

nal Nd³⁺ center decades ago [8,9]. Up to now, however, the above

experimental results have not been quantitatively explained, and

the information about the local structure of this impurity center has not been obtained either. Usually, such information can be

helpful to understand the properties of this model material SrTiO₃

(or other important perovskite-type oxides) containing rare-earth

dopants [10,11]. Thus, theoretical studies on the g factors and the local structure for SrTiO₃:Nd³⁺ are of special scientific and technical

significance. In this work, the EPR spectra and the defect structure of

the above Nd³⁺ center in SrTiO₃ are theoretically investigated from

the perturbation formulas of the g factors for a 4f³ ion under tetrag-

onal symmetry. In the studies, the defect structure model for the impurity center is proposed, by considering the suitable local lattice distortion due to the strong interaction between the impurity

^{*} Corresponding author. Tel.: +86 23 62471346; fax: +86 23 62460592. *E-mail address*: donghn@cqupt.edu.cn (H.-N. Dong).

^{1386-1425/\$ –} see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2010.02.041

linear combination of the X- and Y-components for the total angular momentum operator \hat{J} . $\Gamma \gamma$ and $\Gamma_x \gamma_x$ denote the basis functions of the lowest and the higher Kramers doublets. It is noted that the off-diagonal matrix elements g_J may occur in the expansions of Eq. (1) for the \hat{J}_Z and \hat{J}_+ interactions between different ${}^{2S+1}L_J$ configurations. The basis $\Gamma \gamma(\gamma')$ (where γ and γ' are the two components of the Γ irreducible representation) includes the admixtures of various energy levels, i.e., the admixture between the ground ${}^4I_{9/2}$ and the first excited ${}^4I_{11/2}$ states via the crystal–field interaction, the admixture among ${}^2H_{9/2}$, ${}^4G_{9/2}$ and ${}^4I_{9/2}$ and that among ${}^2I_{11/2}$, ${}^2H_{11/2}$ and ${}^4I_{11/2}$ via the spin–orbit coupling interaction. In detail, the basis $\Gamma \gamma(\gamma')$ can be written as [13]:

$$|\Gamma\gamma(\gamma')\rangle = \sum_{M_{J1}} C({}^{4}I_{9/2}; \Gamma\gamma(\gamma')M_{J})N_{9/2}(|{}^{4}I_{9/2}M_{J1} > +\lambda_{H}|^{2}H_{9/2}M_{J1} > +\lambda_{G}|{}^{4}G_{9/2}M_{J1} >) + \sum_{M_{J2}} C({}^{4}I_{11/2}; \Gamma\gamma(\gamma')M_{J})N_{11/2}(|{}^{4}I_{11/2}M_{J2} > +\lambda_{H'}|^{2}H_{11/2}M_{J2} > +\lambda_{I}|^{2}I_{11/2}M_{J2} >),$$
(2)

where M_{J1} and M_{J2} are within the ranges of -9/2 to 9/2 and -11/2 to 11/2, respectively. The coefficients $C({}^{4}I_{9/2}; \Gamma\gamma(\gamma')M_J)$ or $C({}^{4}I_{11/2}; \Gamma\gamma(\gamma')M_{J2})$ can be determined by diagonalizing the 22×22 energy matrix containing the ${}^{4}I_{9/2}$ and ${}^{4}I_{11/2}$ states. N_j (j=9/2 and 11/2) and λ_{α} ($\alpha=H$, G, H' and I) are, respectively, the normalization factors and the admixture coefficients for the related configurations, which are usually calculated using the perturbation method in terms of the spin–orbit coupling matrix elements [13].

The crystal–field interaction Hamiltonian \hat{H}_{CF} for a 4f³ ion in C_{4v} symmetry may be written in terms of the Stevens operator equivalents [14,15]:

$$\hat{H}_{CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^4 O_4^4 + B_6^4 O_6^4. \tag{3}$$

here B_k^q ($k=2, 4, 6; |q| \le k$) stands for the crystal-field parameters, which are expressed from the local structure of the impurity center. As mentioned above, the impurity Nd³⁺ may experience the axial displacement ΔZ towards the O_I. In fact, the O_I and the Nd³⁺ are actually close to each other along the C₄ axis due to the strong electrostatic attraction, forming the covalent Nd³⁺–O²⁻ bond. This point is supported by the studies on trivalent Fe³⁺ substituting for K⁺ in KTaO₃, [12] with the average Fe³⁺–O_I bond length R_I about 0.19 Å smaller than the sum of the radii for both ions. Since Nd³⁺ has the same charge state and the similar ionicity to Fe³⁺, the Nd³⁺–O_I bond length R_I may be approximately taken as $(r_{Nd^{3+}} + r_{O^{2-}}) - 0.19 \approx 2.125$ Å by using $r_{Nd^{3+}} \approx 0.995$ Å and $r_{O^{2-}} \approx 1.32$ Å [16]. For convenience, the local impurity–ligand bond lengths and angles are divided into four groups (see Fig. 1):

Fig. 1. Local structure for the tetragonal Nd³⁺ center in SrTiO₃. The impurity Nd³⁺ on the dodecahedral Sr²⁺ site experiences the large displacement $\Delta Z (\approx 1.1 \text{ Å})$ towards the nearest neighbour interstitial oxygen O₁ (labeled as O₄) along the C₄ axis.

(4). The quantities \bar{A}_k and t_k are the intrinsic parameters (with the reference distance R_0) and the power-law exponents, respectively. Here the reference distance is taken as the cation–anion distance for the host Sr^{2+} site in SrTiO_3 , i.e., $R_0 = a/\sqrt{2} \approx 2.762$ Å. From Ref. [21], the power-law exponents $t_2 \approx 3.5$, $t_4 \approx t_6 \approx 6$ and the intrinsic parameters $\bar{A}_2 \approx 522$ cm⁻¹, $\bar{A}_4 \approx 66.3$ cm⁻¹ and $\bar{A}_6 \approx 4.1$ cm⁻¹ are obtained for the similar tetragonal Nd³⁺–O^{2–} cluster in CaWO₄:Nd³⁺. These parameters are approximately adopted for SrTiO₃:Nd³⁺ here.

The free-ion parameters of the Coulomb repulsion ($F^2 \approx 71,090 \text{ cm}^{-1}$, $F^4 \approx 50,917 \text{ cm}^{-1}$ and $F^6 \approx 34,173 \text{ cm}^{-1}$), the two-body interaction parameters ($\alpha \approx 20.8 \text{ cm}^{-1}$, $\beta \approx -651 \text{ cm}^{-1}$ and $\gamma \approx 1868 \text{ cm}^{-1}$) and the spin–orbit coupling coefficient ($\zeta_{4f} \approx 875 \text{ cm}^{-1}$) were acquired for the similar Nd³⁺–O^{2–} combination in YAG:Nd³⁺ [22]. These values can also be applied here. In consideration of the covalency between the Nd³⁺ 4f orbitals and the O^{2–} 2p orbitals for the Nd³⁺–O^{2–} bonds in SrTiO₃:Nd³⁺, the orbital reduction factor k (≈ 0.9818) [23] for the Nd³⁺–F[–] bonds in CaF₂:Nd³⁺ may also be used here due to the similarity in covalency for the ligands O^{2–} and F[–] [24,25]. Thus, there is only one unknown parameter, i.e., the impurity displacement ΔZ , in the formulas of the *g* factors. Substituting these values into Eq. (1)

$$R_{1} = \left[\frac{a^{2}}{4} + \left(\frac{a}{2} - \Delta Z\right)^{2}\right]^{1/2}, \quad R_{2} = \left(\frac{R'_{0}^{2}}{2} + \Delta Z^{2}\right)^{1/2}, \quad R_{3} = \left[\frac{a^{2}}{4} + \left(\frac{a}{2} + \Delta Z\right)^{2}\right]^{1/2}, \quad R_{4} = R_{I} \quad (4)$$

$$\theta_{1} = tg^{-1}\left(\frac{a}{a - 2\Delta Z}\right), \quad \theta_{2} = \frac{\pi}{2} + tg^{-1}\left(\frac{\Delta Z}{R_{0}}\right), \quad \theta_{3} = \frac{\pi}{2} + tg^{-1}\left(\frac{a}{a + 2\Delta Z}\right), \quad \theta_{4} = 0.$$

here $a \approx 3.906$ Å [17,18] is the lattice constant of SrTiO₃. Thus, the crystal–field parameters are determined from the superposition model [19] and the local geometrical relationship of the studied system:

$$B_k^q = \sum_{j=1}^4 \bar{A}_k K_k^q(\theta_j, \phi_j) \left(\frac{R_0}{R_j}\right)^{t_k},\tag{5}$$

where $K_k^q(\theta_j, \phi_j)$ are the coordination factors [19,20] based on the above local impurity–ligand bond lengths and angles in Eq.

and fitting the theoretical results to the experimental data, one can obtain $\Delta Z \approx 1.1$ Å. Here the displacement direction towards the interstitial oxygen O₁ is defined as positive. The calculated *g* factors together with the anisotropy $\Delta g (=g_{||} - g_{\perp})$ and the average $\bar{g} [=(g_{||} + 2g_{\perp})/3]$ are compared with the observed values in Table 1. In order to clarify the importance of the contributions from the compensator O₁ and the impurity displacement, the results (Cal.^a) based on omission of the crystal–fields arising from the O₁ (i.e., taking the distance $R_{\rm I} \rightarrow \infty$ in Eq. (5)) and those (Cal.^b) based on omission of

Download English Version:

https://daneshyari.com/en/article/1234570

Download Persian Version:

https://daneshyari.com/article/1234570

Daneshyari.com