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a  b  s  t  r  a  c  t

The  maximum  absorption  wavelength  (�max)  of a large  data  set of  191  azobenzene  dyes  was  pre-
dicted  by  quantitative  structure–property  relationship  (QSPR)  tools.  The  �max was  correlated  with  the
4  molecular  descriptors  calculated  from  the  structure  of  the  dyes  alone.  The  multiple  linear  regression
method  (MLR)  and the  non-linear  radial basis  function  neural  network  (RBFNN)  method  were  applied  to
develop  the  models.  The  statistical  parameters  provided  by  the MLR  model  were  R2 =  0.893,  R2

adj = 0.893,

q2
LOO =  0.884,  F =  1214.871,  RMS  =  11.6430  for the training  set;  and  R2 =  0.849,  R2

adj =  0.845,  q2
ext =  0.846,

F  =  207.812,  RMS  =  14.0919  for the  external  test  set.  The  RBFNN  model  gave even  improved  statisti-
cal  results:  R2 =  0.920,  R2

adj =  0.919,  q2
LOO = 0.898,  F =  1664.074,  RMS  =  9.9215  for the  training  set,  and

R2 = 0.895,  R2
adj = 0.892,  q2

ext = 0.895,  F = 314.256,  RMS  = 11.6427  for  the  external  test  set.  This theoret-
ical method  provides  a simple,  precise  and  an  alternative  method  to obtain  �max of  azobenzene  dyes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The history of dyes can be traced back to 2600 BC when there was
the earliest written record of the use of dyes in China [1].  Originally,
the dyes were obtained naturally until the discovery of the first syn-
thetic dye pigment “Mauve” by William Henry Perkin in 1856 [2].
Since the first azo dye spliced onto the fabric by coupling in 1880,
thousands of organic chromogens were produced by the dye indus-
try [3].  For example, in 1995, 90% of the 3000 compounds registered
in the Color Index were used at the level of at least 100 tons per year
[4]. Nowadays, the abundant classes of colored organic compounds
play a crucial role in the industry, not only as dyes or pigments
but also in more technological fields, such as thermal transfer sys-
tems, molecular switches, media storages or photovoltaic devices
[5–7]. Among so many kinds of dyestuffs, two families of indus-
trial organic dyes, 9,10-anthraquinones (AQ) and azobenzenes (AB,
see Fig. 1), encompass about 90% of today’s world dye produc-
tion together [6].  The latter (AB) are also of importance in many
branches of chemistry, being widely applied as dyes with colors
ranging from red to blue [8].  As it is known, the industrial appli-
cations imply that it should design specific dyes possessing given
properties including acidity, alkalinity, thermal stability, affinity
to fibre, and adsorption. Another spectroscopic property, which is
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related to the important color property and determined mainly by
the structure of the dyes, is the maximum absorption wavelengths
(�max). Once the �max of the compound is known, the color will be
unequivocally determined.

Nowadays, the �max of the dyes is usually obtained experimen-
tally [9].  Application of experimental methods to obtain the �max

of dyes is the most obvious and effective methods, however, there
are some drawbacks such as the need for laboratory facilities, the
huge workload. Also, the method cannot be easily applied for toxic,
volatile, explosive or radioactive substances; and it cannot be used
if the material has not been synthesized yet. For instance, several
classes of dyes are considered as possible carcinogens or mutagens;
the high coloring power of dyes gives rise to esthetic damage: dye
concentrations lower than 1 mg/L may induce visible coloration and
hence public complaint [10]. Therefore, it is necessary to resort
to the theoretical methods to compensate the shortage of exper-
imental research methods. Several researchers have addressed the
challenging task of predicting the �max by the means of computa-
tion. We  think that the methods for quantitative prediction of the
absorption maxima of dyes from their molecular structures alone
would be of significant utility not only in the use of dyes but also
in the molecular design process of new dyes.

Some theoretical methods have been applied to solve this prob-
lem. One kind of theoretical method is the large-scale highly
correlated ab initio approaches such as EOM-CC, MR-CI, or CAS-
PT2, which can be used to calculate the maximum absorption
wavelength of dyes based on post-Hartree–Fock methods [11–13].
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Fig. 1. General sketch of azobenzenes (AB) investigated in the present study.

Though they are accurate but time consuming and present a prob-
lematic scaling with the system dimension. On the other hand,
semi-empirical methods (CNDO/S, INDO/S) are applicable for large
systems but with a significant loss in accuracy [14,15]. In the
recent years, the most widely applied tool for modeling electronic
spectra of structures is the time dependent density functional the-
ory (TD-DFT) [16–18],  which can give a counterpoise between
the remarkable accuracies and “reasonable” computational times
[19–23]. It is important to stress that TD-DFT methods – although
expensive for large systems – have been proven to be very efficient
to calculated the �max of organic and inorganic dyes including the
azobenzene molecules [24–27].

Another theoretical method, fast quantitative
structure–property relationship (QSPR) approaches, would
possess some advantages, because they could be extended to
larger molecules consisting of hundreds of atoms with acceptable
accuracy and could deal with larger data sets quickly. In the past
decades, QSPR studies, as one of the most important areas in
chemometrics, were used widely to predict a wide variety of
physical, chemical, biological and toxicology properties [28,29].
The purpose of this method is to seek for mathematical equations
relating the descriptors calculated from the chemical structure to
the desired properties [30]. As we know, there are not only over
thousands of molecular descriptors to represent the attributes of
the interesting compounds but also some of the descriptors always
can correlate to the property properly [31]. The advantage of this
approach lies in the fact that it requires only the knowledge of
the chemical structure and is not dependent on any experimental
properties. Once a correlation is established, it can be applied for
the prediction of the property of new compounds that have not
been tested, synthesized or found yet. Thus the QSPR approach can
expedite the process of the development of new molecules and
materials with desired properties.

There are some reports about the applications of QSPR methods
to investigate the relationship between the �max and the struc-
ture of dyes in recent years. For example, Buttingsrud et al. [32]
build empirical models relating bond lengths and critical points
in the electron density distribution to the �max of azobenzene
dyes. Xu et al. developed a linear QSPR model to predict maxi-
mum  absorption wavelength of second-order NLO chromophores
[33]. The same authors also predicted the maximum absorption
wavelength of dye-sensitized solar cells using two  different QSPR
methods [34,35]. Li et al. applied semiempirical quantum chemi-
cal method and artificial neural networks to compute �max of 31
azo dyes [36]. Moreover, a recent work of Fayet et al. performed a
well QSPR study of the relation between the experimental �max of
a small set of 22 azobenzenes and 24 anthraquinones dyes using
quantum chemical descriptors [37].

To the best of our knowledge, there has been no general QSPR
study on the kind of azobenzenes dyes using the general descrip-
tors. Together with the desire of introducing this method into dyes
studies, in the present work, we aim to seek for a fast and general
approach that would offer reliable theoretical prediction of �max of
the commonly used azobenzenes dyes.

2.  Materials and methods

2.1. Data set

Our models were developed using a library of 191 azobenzene
dyes. The data set was  available from the literature published by
Buttingsrud et al. [32]. The molecules used in this study, all have
the common azobenzene skeleton shown in Fig. 1. The detail struc-
tures of all the studied molecules are shown in Supplementary
Information (see S1). The experimental �max of the azobenzene
dyes and their corresponding number are listed in Table 1. These
values cover the range from 318 to 514 nm,  therefore within the
ultraviolet and the visible range.

As it is usually done in any QSPR study, the entire set of com-
pounds was  randomly divided into the training and the external
test sets. The training set, consisting of 152 compounds, was used
to build and consider the robustness of the model. The test set with
the other 39 compounds not used in the training set was  used to
evaluate the models once they were built.

2.2. Descriptor generation

The structures of all compounds were first drawn with the aid
of the ISIS Draw 2.3 program [38]. Reasonable starting geome-
tries were obtained by resorting to the MM+  molecular mechanics
force field [39,40] in the HyperChem6.0 program [41]. The final
optimization was obtained using the semi-empirical PM3  model
implemented in the MOPAC 6.0 program [42]. All calculations
were carried out at the restricted Hartree–Fock level (therefore
with no configuration interaction). The molecular structures were
optimized using the Polake–Ribiere algorithm until the root-mean-
square gradient was  less than 0.01 kcal/mol.

Subsequently, the output files exported from MOPAC were
transferred into the software CODESSA [43,44] to generate the
descriptors. In the present study, we obtained 38 constitu-
tional, 38 topological, 12 geometrical, 81 electrostatic, and 396
quantum-chemical descriptors for each compound. In addition, 7
physicochemical descriptors were also calculated by Hyperchem,
including refractivity, approximate surface area, grid surface area,
volume, log P, polarizability and mass [41]. At last, 572 descriptors
for each compound were kept for further study.

2.3. Modeling techniques

Generally, a huge number of descriptors representing a com-
pound can be measured or computed, but how to deal with this high
dimensional information is a problem. In many cases, there is no a
priori knowledge on their role in describing a particular property.
Therefore, it is very important to select a proper subset of descrip-
tors to build the QSAR or QSPR models. Up to now, several methods
used to select the descriptors have been reported, including linear
and nonlinear methods like the multiple linear regression (MLR)
[45], linear discriminant analysis (LDA) [46], principal component
analysis (PCA) [47], and the global search methods like genetic algo-
rithms (GA) [48] and simulated annealing (SA) [49], also including
artificial neural network (ANN) [50] and support vector machines
(SVMs) [51].

In the present study, the heuristic method (HM) was used. HM
is implemented in CODESSA and has been used in several other
papers [52–55],  as it is 2–5 times faster than other methods with
comparable quality [56]. The HM of the descriptor selection pro-
ceeds with a pre-selection by eliminating descriptors that (i) are
not available for each structure; (ii) have a small variation in mag-
nitude for all structures; (iii) have a Fisher F-criterion below 1.0;
and (iv) have t-values less than the user-specified value (by default
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