

Contents lists available at SciVerse ScienceDirect

## Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy



journal homepage: www.elsevier.com/locate/saa

## Spectroscopic analyses on interaction of Amantadine-Salicylaldehyde, Amantadine-5-Chloro-Salicylaldehyde and Amantadine-o-Vanillin Schiff-Bases with bovine serum albumin (BSA)

Zhiqiu Wang, Jingqun Gao, Jun Wang\*, Xudong Jin, Mingming Zou, Kai Li, Pingli Kang

College of Chemistry, Liaoning University, Shenyang 110036, PR China

#### ARTICLE INFO

Article history: Received 5 July 2011 Received in revised form 29 August 2011 Accepted 31 August 2011

Keywords: Spectroscopic analysis Interaction Bovine serum albumin (BSA) Amantadine Schiff-Base Salicylaldehyde derivant

#### ABSTRACT

In this work, three Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) Schiff-Bases, Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V), were synthesized by direct heating reflux method in ethanol solution and characterized by infrared spectrum and elementary analysis. Fluorescence quenching was used to study the interaction of these Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) with bovine serum albumin (BSA). According to fluorescence quenching calculations the bimolecular quenching constant ( $K_q$ ), apparent quenching constant ( $K_x$ ), effective binding constant ( $K_A$ ) and corresponding dissociation constant ( $K_D$ ), binding site number (n) and binding distance (r) were obtained. The results show that these Amantadine Schiff-Bases can obviously bind to BSA molecules and the binding strength order is AS < AS-5-C = AS-o-V. Synchronous fluorescence spectroscopy reveals that these Amantadine Schiff-Bases adopt different way to bind with BSA molecules. That is, the AS and AS-5-C are accessibility to tryptophan (Trp) residues more than the tyrosine (Tyr) residues, while the AS-o-V is equally close to the Tyr and Trp residues.

© 2011 Elsevier B.V. All rights reserved.

#### 1. Introduction

Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) is an antivirotic drug that has been used to treat influenza and Parkinson disease [1–6]. However, in recent years, influenza is often caused by viruses and germs at the same time [7,8]. Because it has only antivirotic activity, Amantadine cannot be used to treat current influenza. Therefore, it is necessary to develop the difunctional or multifunctional anti-influenza drug, which not only has antiviral activity but also does antibacterial action [9].

Aromatic Schiff-Bases are a large class of organic compounds with imino (-HC=N-) group and simple structures [10–12]. The aromatic plane structure and strong binding ability lead to bacteriostatic, fungicidal, anti-tumour, and anti-viral biological activities. Hence, many aromatic Schiff-Base compounds have developed as antibacterial, antitumour and antivirotic drugs in recent years [13–15]. 2-Hydroxybenzaldehyde (Salicylaldehyde), which has frequently been used to synthesis aromatic Schiff-Base compounds, has many biological activities, such as analgesic, anti-inflammatory, antibacterial, bactericidal and antiviral activities [16–18]. Aromatic Schiff-Bases have also been used as efficient herbicide, pesticide and bactericide [19,20]. In order to combine bacteriostatic ability and anti-viral activity in aromatic Schiff-Bases, in this work, the Salicylaldehyde and its two analogous compounds (5-Chloro-2-hydroxybenzaldehyde (5-Chloro-Salicylaldehyde) and 2-Hydroxy-3-methoxybenzaldehyde (o-Vanillin)) were used to react with Amantadine, so that three Amantadine Schiff-Bases (Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadineo-Vanillin (AS-o-V)) were synthesized [21]. There identify was verified by elemental analysis and IR spectroscopy. The molecular structures of three synthesized Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) are given in Fig. 1.

The well known serum albumin is the most abundant proteins in the plasma [22–24], and has many physiological functions. In this work, the bovine serum albumin (BSA) was chosen as a target protein molecule because of its low cost, ready availability, ligand-binding properties [25–27]. Moreover, the molecular structure of BSA is similar to that of human serum albumin (HSA) with 76% identify, so the results of the studies conducted here are applicable to HSA [28]. Hence, the quenching of intrinsic fluorescence is used to research the interaction between three synthesized Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) and BSA molecules. The interaction strength and mode of binding were also studied by synchronous fluorescence spectroscopy.

<sup>\*</sup> Corresponding author. Tel.: +86 024 62207859; fax: +86 024 62202053. *E-mail address:* wangjun890@126.com (J. Wang).

<sup>1386-1425/\$ -</sup> see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2011.08.076

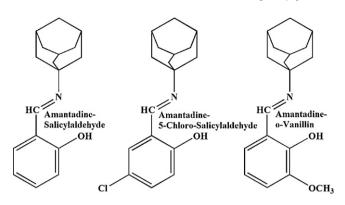



Fig. 1. Molecular structure of Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V) Schiff-Bases.

### 2. Experimental

#### 2.1. Materials

Commercially prepared bovine serum albumin (BSA, purity >98%. 4.8 isoelectric point, 16% nitrogen content, sugar content 0.08% and 0.2% fat content) was obtained from Beijing Abxing Biological Technology Company and stored in refrigerator at 4.0 °C. Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine hydrochloride, analytical reagent grade), 2-hydroxybenzaldehyde (Salicylaldehyde, analytical reagent grade), 5-Chloro-2-hydroxybenzaldehyde (5-Chloro-Salicylaldehyde, analytical reagent grade) and 2-Hydroxy-3-methoxybenzaldehyde (o-Vanillin, analytical reagent grade) were purchased from Tianjing Tianhe Chemical Reagent Co., Ltd. All other reagents were commercial products of analytical grade and used as received. The Tris (hydroxyl-methyl) aminomethane (Tris), HCl and NaCl were all of analytical reagent grade, and double distilled water was used for all solution preparation.

#### 2.2. Apparatus and instruments

The fluorescence measurements were performed on a fluorophotometer (Cary 300, Varian Company, USA) and the UV-vis absorption spectra were recorded with an UV-vis spectrophotometer (Cary 50, Varian Company, USA). The compositions of synthesized Amantadine Schiff-Bases were determined by using an elementalanalyser (Perkin-Elmer 2400, PerkinElmer Company, USA). Their structures were analyzed by Fourier transform infrared spectrophotometer (Spectrum 100, Perkin-Elmer Company, USA) and proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopy (Mercury-Vx300, Varian Company, USA). The solution pH value was measured with a pH meter.

# 2.3. Syntheses of Amantadine Schiff-Bases (AS, AS-5-C and AS-0-V)

Three Amantadine Schiff-Bases, Amantadine-Salicylaldehyde (AS, C<sub>17</sub>H<sub>21</sub>NO), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C, C<sub>17</sub>H<sub>20</sub>NOCl) and Amantadine-o-Vanillin (AS-o-V, C<sub>18</sub>H<sub>23</sub>NO<sub>2</sub>), were synthesized, respectively, through refluxing, distillation and filtration of mixed ethanol solutions of Amantadine and Salicylaldehyde, 5-Chloro-Salicylaldehyde and o-Vanillin, 4,1296 g (0.022 mol) Amantadine hydrochloride and 1.2343 g (0.022 mol) KOH were added to 50 mL ethanol in a 150 mL beaker and then stirred for 24 h. The produced white precipitates (KCl) were filtered out and the clear liquid was transferred to a 250 mL three-necked flask. During the refluxing at 95 °C in oil bath, 50 mL Salicylaldehyde (2.4424 g, 0.020 mol) ethanol solution was added dropwise to the above Amantadine ethanol solution. After 3.0 h reflux, the mixed ethanol solution was concentrated to about 10 mL through reduced pressure distillation. After naturally cooling to room temperature, the AS Schiff-Base (pale yellow) microcrystals appeared in the bottom of flask. The sample was filtrated and washed with ethanol three times and dried at 120 °C to constant weight.

AS-5-C (yellow microcrystals) and AS-o-V (deep yellow microcrystals) Schiff-Bases were synthesized using similar methods described above. The elemental analysis of these compounds is given in Table 1, and the FT-IR and <sup>1</sup>H NMR results are given in Fig. 2 and Tables 2 and 3, respectively.

#### 2.4. Measurement of binding parameters

For each of the three Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V), the binding parameters with BSA molecules were measured by fluorescence spectroscopy. BSA and Amantadine

#### Table 1

Elementary analyses of Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V) Schiff-Bases.

| Schiff-Bases                        | Molecular formula                               | Molecular weight | Colour      | Melting point (°C) | C (%)           |                | H (%)           |              | N (%)           |              |
|-------------------------------------|-------------------------------------------------|------------------|-------------|--------------------|-----------------|----------------|-----------------|--------------|-----------------|--------------|
| Amantadine-Salicylaldehyde          | C <sub>17</sub> H <sub>21</sub> NO              | 255.34           | Pale yellow | 92<br>-93          | Calcd.<br>Found | 79.96<br>79.94 | Calcd.<br>Found | 8.29<br>8.31 | Calcd.<br>Found |              |
| Amantadine-5-Chloro-Salicylaldehyde | C <sub>17</sub> H <sub>20</sub> NOCl            | 289.79           | Yellow      | 130<br>-133        | Calcd.<br>Found | 70.46<br>70.43 | Calcd.<br>Found | 6.96<br>6.98 | Calcd.<br>Found | 4.83<br>4.89 |
| Amantadine-o-Vanillin               | C <sub>18</sub> H <sub>23</sub> NO <sub>2</sub> | 285.37           | Deep yellow | 104<br>-107        | Calcd.<br>Found | 75.75<br>75.72 | Calcd.<br>Found | 8.12<br>8.10 | Calcd.<br>Found | 4.91<br>4.96 |

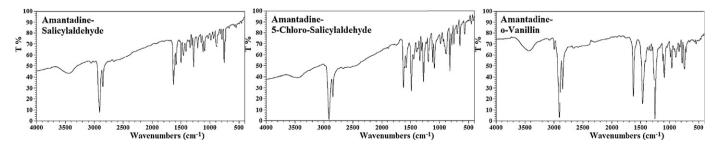



Fig. 2. Infrared spectra of Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V) Schiff-Bases (with potassium bromide (KBr) pellet at room temperature (about 25 °C)).

Download English Version:

https://daneshyari.com/en/article/1235214

Download Persian Version:

https://daneshyari.com/article/1235214

Daneshyari.com