Studies of the g factors of the ground ${ }^{4} A_{2}$ and the first excited ${ }^{2} E$ state of Cr^{3+} ions in emerald

Qun Wei ${ }^{\text {a, },}$, Li-Xin Guo ${ }^{\text {a }}$, Zi-Yuan Yang ${ }^{\text {b }}$, Bing Wei ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Science, Xidian University, Xi'an 710071, PR China
${ }^{\mathrm{b}}$ Department of Physics, Baoji University of Arts and Science, Baoji 721007, PR China

A R T I C L E I N F O

Article history:

Received 1 February 2011
Received in revised form 9 April 2011
Accepted 15 April 2011

PACS:

76.30Fc
71.70Ch
78.50Ec
71.55 Ht

Keywords:
g factors
${ }^{2} E$ state
Emerald

Abstract

By using complete diagonalization method, the zero-field splitting and g factors of the ground ${ }^{4} A_{2}$ and the first excited ${ }^{2} E$ states of Cr^{3+} ions in emerald are calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on the crystal field parameters, including $D q, v$, and v^{\prime}, have been studied. It is shown that, the g factors of the ground state varied with the crystal field parameters approximately in a linear way, but the g factors of the first excited state varied nonlinearly with these parameters.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Emerald ($\left.\mathrm{Be}_{3} \mathrm{Si}_{6} \mathrm{Al}_{2} \mathrm{O}_{18}: \mathrm{Cr}^{3+}\right)$ is of great interest because of applications as the tunable solid-state laser material and has been studied experimentally and theoretically by many researchers [1-10]. The host $\mathrm{Be}_{3} \mathrm{Si}_{6} \mathrm{Al}_{2} \mathrm{O}_{18}$ crystal has the beryl structure with the space group designated as $\mathrm{P6} / \mathrm{mcc}$ and two molecules per unit cell. Cr^{3+} ions doped into $\mathrm{Be}_{3} \mathrm{Si}_{6} \mathrm{Al}_{2} \mathrm{O}_{18}$ crystals, substitute for the Al^{3+} ions with D_{3} site symmetry. The six oxygen ligands around Cr^{3+} ions are located at the vertices of a slightly distorted octahedron having the [111] direction along the C_{3} axis of the unit cell. The ground state of $\mathrm{Cr}^{3+}\left(3 \mathrm{~d}^{3}\right)$ ions at trigonal symmetry sites is ${ }^{4} A_{2}(F)$, and the first excited state is ${ }^{2} E(G)$. Yin et al. [1] confirmed there exist the Jahn-Teller effects in emerald by studying the optical spectra. Wood [9] and Fairbank et al. [2] reported the optical spectra and the zero-field splittings (ZFSs) of ${ }^{4} A_{2}$ and ${ }^{2} E$ states. Wang et al. [8] studied the local polarization phenomena of $\left(\mathrm{CrO}_{6}\right)^{9-}$ cluster in emerald, and reported that oxygen ligands in $\left(\mathrm{CrO}_{6}\right)^{9-}$ cluster exhibit remarkable polarization effect due to the effect of surrounding environment. Taking into account the spin-orbit interaction only, Macfarlane [10] calculated the ZFS and g factors of ${ }^{4} A_{2}$ and ${ }^{2} E$ states by using analytical and numerical methods. In the present

[^0]work, by taking into account the spin-spin (SS), spin-other-orbit (SOO), and orbit-orbit (OO) interactions as well as the spin-orbit (SO) interaction, the ZFS and g factors of ${ }^{4} A_{2}$ and ${ }^{2} E$ states have been calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on crystal field parameters have been studied.

2. Theory

The energy matrices for the $3 d^{3}$ configuration ion in a crystal have been established using the Hamiltonian [11,12]
$H=H_{\mathrm{ee}}(B, C)+H_{\mathrm{CF}}\left(B_{k q}\right)+H_{M}\left(\zeta, M_{0}, M_{2}\right)$
where $H_{\mathrm{ee}}, H_{\mathrm{CF}}$, and H_{M} represent, respectively, the electrostatic, the crystal field (CF), and the magnetic interactions. $H_{\text {CF }}$ in the Wybourne notation is given for trigonal symmetry type I ($C_{3 v}, D_{3}$, $D_{3 d}$) as [11,13-17]:
$H_{\text {CF }}=B_{20} C_{0}^{(2)}+B_{40} C_{0}^{(4)}+B_{43} C_{3}^{(4)}+B_{4-3} C_{-3}^{(4)}$
where $B_{k q}$ are CF parameters with $B_{4-3}=-B_{43}$ for trigonal symmetry type I, and $C_{q}^{(k)}$ are normalized spherical harmonics. The CF parameters $B_{k q}$ can be expressed in terms of the conventional ones $[18,19]$ as:
$B_{20}=v-2 \sqrt{2} v^{\prime}$

Fig. 1. The relationship between the g factors and the cubic CF parameter $D q$.
$B_{40}=-14 D q+\frac{4}{3} v+2 \sqrt{2} v^{\prime}$
$B_{43}=-\sqrt{\frac{7}{10}}\left(20 D q+\frac{2}{3} v+\sqrt{2} v^{\prime}\right)$
where $D q$ is the cubic CF parameter, whereas v and v^{\prime} are the trigonal CF parameters [18]. The magnetic interactions can be given as [12]:
$H_{M}=H_{\mathrm{SO}}(\zeta)+H_{\mathrm{SOO}}\left(M_{0}, M_{2}\right)+H_{\mathrm{SS}}\left(M_{0}, M_{2}\right)+H_{\mathrm{OO}}\left(M_{0}, M_{2}\right)$
where ζ is the spin-orbit interaction parameter, whereas M_{0} and M_{2} are the Marvin's radial integrals [20] used for representing the SS, SOO and OO interactions. Our calculations for Hamiltonian matrix elements are carried out in the intermediate CF coupling scheme [21,22]. The method of calculations of the matrix elements of $H_{\text {ee }}, H_{\text {SO }}$, and $H_{\text {CF }}$ has been described in [23], whereas those for $H_{\mathrm{SS}}, H_{\mathrm{SoO}}$ and H_{OO} in [12,17].

Using the microscopic spin Hamiltonian theory, the ZFS parameter D and the g factors of the ground ${ }^{4} A_{2}$ state of $3 d^{3}$ ion in trigonal symmetry can be derived as:
$D=\frac{1}{2}\left\{\varepsilon\left[E^{\prime \prime}\left({ }^{4} A_{2}\right)\right]-\varepsilon\left[E^{\prime}\left({ }^{4} A_{2}\right)\right]\right\}$
$g_{\|}\left({ }^{4} A_{2}\right)=2\left\langle\psi_{1 / 2}\right| k L_{z}+g_{s} S_{z}\left|\psi_{1 / 2}\right\rangle$
$g_{\perp}\left({ }^{4} A_{2}\right)=\left\langle\psi_{1 / 2}\right| k L_{x}+g_{s} S_{x}\left|\psi_{-1 / 2}\right\rangle$,
where the symbols are defined as in $[13,24]$.
The first excited ${ }^{2} E$ state can be split by magnetic interactions into two two-fold-degenerate states $E^{\prime}\left({ }^{2} E\right)$ and $E^{\prime \prime}\left({ }^{2} E\right)$. The zero field splitting of ${ }^{2} E$ state is defined as:
$\Delta\left({ }^{2} E\right)=\varepsilon\left[E^{\prime}\left({ }^{2} E\right)\right]-\varepsilon\left[E^{\prime \prime}\left({ }^{2} E\right)\right]$

Fig. 2. The relationship between the g factors and the trigonal CF parameter v.

Fig. 3. The relationship between the g factors and the trigonal CF parameter v^{\prime}.
For $E^{\prime}\left({ }^{2} E\right)$ state, the g factors are defined by $[10,25]$:
$g_{\|}\left[E^{\prime}\left({ }^{2} E\right)\right]=2\left\{k\left\langle E_{+}^{\prime}\right| L_{z}\left|E_{+}^{\prime}\right\rangle+g_{s}\left\langle E_{+}^{\prime}\right| S_{z}\left|E_{+}^{\prime}\right\rangle\right\}$,
$g_{\perp}\left[E^{\prime}\left({ }^{2} E\right)\right]=2\left\{k\left\langle E_{+}^{\prime}\right| L_{x}\left|E_{-}^{\prime}\right\rangle+g_{s}\left\langle E_{+}^{\prime}\right| S_{X}\left|E_{-}^{\prime}\right\rangle\right\}$,

https://daneshyari.com/en/article/1236505

Download Persian Version:

https://daneshyari.com/article/1236505

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 13649273458.

 E-mail address: weiaqun@163.com (Q. Wei).

