

Contents lists available at ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

journal homepage: www.elsevier.com/locate/saa

Studies of the g factors of the ground ${}^{4}A_{2}$ and the first excited ${}^{2}E$ state of Cr³⁺ ions in emerald

Qun Wei^{a,*}, Li-Xin Guo^a, Zi-Yuan Yang^b, Bing Wei^a

^a School of Science, Xidian University, Xi'an 710071, PR China

^b Department of Physics, Baoji University of Arts and Science, Baoji 721007, PR China

ARTICLE INFO

Article history: Received 1 February 2011 Received in revised form 9 April 2011 Accepted 15 April 2011

PACS: 76.30Fc 71.70Ch 78.50Ec 71.55Ht

Keywords: g factors ²*E* state Emerald

1. Introduction

Emerald (Be₃Si₆Al₂O₁₈:Cr³⁺) is of great interest because of applications as the tunable solid-state laser material and has been studied experimentally and theoretically by many researchers [1-10]. The host Be₃Si₆Al₂O₁₈ crystal has the beryl structure with the space group designated as P6/mcc and two molecules per unit cell. Cr³⁺ ions doped into Be₃Si₆Al₂O₁₈ crystals, substitute for the Al^{3+} ions with D_3 site symmetry. The six oxygen ligands around Cr³⁺ ions are located at the vertices of a slightly distorted octahedron having the [111] direction along the C_3 axis of the unit cell. The ground state of Cr³⁺(3d³) ions at trigonal symmetry sites is ${}^{4}A_{2}(F)$, and the first excited state is ${}^{2}E(G)$. Yin et al. [1] confirmed there exist the Jahn-Teller effects in emerald by studying the optical spectra. Wood [9] and Fairbank et al. [2] reported the optical spectra and the zero-field splittings (ZFSs) of ${}^{4}A_{2}$ and ${}^{2}E$ states. Wang et al. [8] studied the local polarization phenomena of $(CrO_6)^{9-}$ cluster in emerald, and reported that oxygen ligands in $(CrO_6)^{9-}$ cluster exhibit remarkable polarization effect due to the effect of surrounding environment. Taking into account the spin-orbit interaction only, Macfarlane [10] calculated the ZFS and g factors of ${}^{4}A_{2}$ and ${}^{2}E$ states by using analytical and numerical methods. In the present

ABSTRACT

By using complete diagonalization method, the zero-field splitting and g factors of the ground ${}^{4}A_{2}$ and the first excited ${}^{2}E$ states of Cr³⁺ ions in emerald are calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on the crystal field parameters, including Dq, v, and v', have been studied. It is shown that, the g factors of the ground state varied with the crystal field parameters approximately in a linear way, but the g factors of the first excited state varied nonlinearly with these parameters.

© 2011 Elsevier B.V. All rights reserved.

work, by taking into account the spin-spin (SS), spin-other-orbit (SOO), and orbit-orbit (OO) interactions as well as the spin-orbit (SO) interaction, the ZFS and g factors of ${}^{4}A_{2}$ and ${}^{2}E$ states have been calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on crystal field parameters have been studied.

2. Theory

The energy matrices for the $3d^3$ configuration ion in a crystal have been established using the Hamiltonian [11,12]

$$H = H_{ee}(B, C) + H_{CF}(B_{kq}) + H_M(\zeta, M_0, M_2)$$
(1)

where H_{ee} , H_{CF} , and H_M represent, respectively, the electrostatic, the crystal field (CF), and the magnetic interactions. H_{CF} in the Wybourne notation is given for trigonal symmetry type I ($C_{3\nu}$, D_3 , D_{3d}) as [11,13–17]:

$$H_{\rm CF} = B_{20}C_0^{(2)} + B_{40}C_0^{(4)} + B_{43}C_3^{(4)} + B_{4-3}C_{-3}^{(4)}$$
(2)

where B_{kq} are CF parameters with $B_{4-3} = -B_{43}$ for trigonal symmetry type I, and $C_q^{(k)}$ are normalized spherical harmonics. The CF parameters B_{kq} can be expressed in terms of the conventional ones [18,19] as:

$$B_{20} = v - 2\sqrt{2}v'$$
(3)

^{*} Corresponding author. Tel.: +86 13649273458. *E-mail address:* weiaqun@163.com (Q. Wei).

^{1386-1425/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2011.04.040

Fig. 1. The relationship between the g factors and the cubic CF parameter Dq.

$$B_{40} = -14Dq + \frac{4}{3}\nu + 2\sqrt{2}\nu' \tag{4}$$

$$B_{43} = -\sqrt{\frac{7}{10}(20Dq + \frac{2}{3}\nu + \sqrt{2}\nu')}$$
(5)

where Dq is the cubic CF parameter, whereas v and v' are the trigonal CF parameters [18]. The magnetic interactions can be given as [12]:

$$H_M = H_{\rm SO}(\zeta) + H_{\rm SOO}(M_0, M_2) + H_{\rm SS}(M_0, M_2) + H_{\rm OO}(M_0, M_2)$$
(6)

where ζ is the spin–orbit interaction parameter, whereas M_0 and M_2 are the Marvin's radial integrals [20] used for representing the SS, SOO and OO interactions. Our calculations for Hamiltonian matrix elements are carried out in the intermediate CF coupling scheme [21,22]. The method of calculations of the matrix elements of H_{ee} , H_{SO} , and H_{CF} has been described in [23], whereas those for H_{SS} , H_{SOO} and H_{OO} in [12,17].

Using the microscopic spin Hamiltonian theory, the ZFS parameter *D* and the g factors of the ground ${}^{4}A_{2}$ state of $3d^{3}$ ion in trigonal symmetry can be derived as:

$$D = \frac{1}{2} \{ \varepsilon [E''({}^{4}A_{2})] - \varepsilon [E'({}^{4}A_{2})] \}$$
(7)

$$g_{\parallel}({}^{4}A_{2}) = 2\langle \psi_{1/2} | kL_{z} + g_{s}S_{z} | \psi_{1/2} \rangle$$
(8)

$$g_{\perp}({}^{4}A_{2}) = \langle \psi_{1/2} | kL_{x} + g_{s}S_{x} | \psi_{-1/2} \rangle, \qquad (9)$$

where the symbols are defined as in [13,24].

The first excited ${}^{2}E$ state can be split by magnetic interactions into two two-fold-degenerate states $E'({}^{2}E)$ and $E''({}^{2}E)$. The zero field splitting of ${}^{2}E$ state is defined as:

$$\Delta(^{2}E) = \varepsilon[E'(^{2}E)] - \varepsilon[E''(^{2}E)]$$
(10)

Fig. 2. The relationship between the g factors and the trigonal CF parameter v.

Fig. 3. The relationship between the g factors and the trigonal CF parameter v'.

For $E'(^{2}E)$ state, the g factors are defined by [10,25]:

$$g_{\parallel}[E'(^{2}E)] = 2\{k\langle E'_{+}|L_{Z}|E'_{+}\rangle + g_{S}\langle E'_{+}|S_{Z}|E'_{+}\rangle\},\tag{11}$$

$$g_{\perp}[E'(^{2}E)] = 2\{k\langle E'_{+}|L_{x}|E'_{-}\rangle + g_{s}\langle E'_{+}|S_{x}|E'_{-}\rangle\},$$
(12)

Download English Version:

https://daneshyari.com/en/article/1236505

Download Persian Version:

https://daneshyari.com/article/1236505

Daneshyari.com