

Available online at www.sciencedirect.com

SPECTROCHIMICA ACTA PART A

Spectrochimica Acta Part A 67 (2007) 756-761

www.elsevier.com/locate/saa

Geometries and electronic structures of metastable C₂N₄ and its ions

Xiaolei Zhu^{a,b,*}, Xiaohua Lu^a, Xin Feng^a

^a College of Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China ^b Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, PR China

Received 22 June 2006; accepted 25 July 2006

Abstract

We carried out the computational studies on the geometric and electronic properties of electronic states of metastable C_2N_4 (m- C_2N_4) and corresponding ions using the CASSCF and DFT(B3LYP)/CCSD(T) techniques. The optimized geometries of electronic states, vibrational frequencies, Mulliken populations, bond orders, and average polarizabilities are computed at the DFT level while the relative energies of the electronic states, ionization energy, electron affinity, binding energy of m- C_2N_4 are calculated at the CCSD(T) level. The anion photoelectron spectra of m- $C_2N_4^-$ are also predicted. It is interesting to find that the relative energies of the electronic states of m- C_2N_4 cluster linearly correlate with the amount of charge transfer between N and C atoms and that, however, there is no charge transfer between C and N atoms upon electron ionization or electron attachment.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Carbon nitride cluster; Electronic state; Anion photoelectron spectrum

1. Introduction

Clusters have been intensively investigated in recent years [1–22]. It is well known that the group III–V semiconductors are applied in the fabrication of fast microelectronic devices. Thus, the geometries, electronic structures, and spectroscopic properties of mixed III–V group clusters have been the focus of many theoretical and experimental studies [9–12,19,20].

Since Liu and Cohen [23] have predicted that some of the crystalline forms of C_3N_4 might have values of bulk modulus close to, or even greater than, that of diamond, the synthesis, structure, and property of carbon nitride have been the topic of many theoretical and experimental studies [23–29]. C_3N_4 has several different phases [27], that is, β - C_3N_4 , α - C_3N_4 , C_3N_4 defective zinc-blende structure with carbon vacancies, cubic C_3N_4 , and two graphite-like rhombohedral forms. Various other carbon nitride compounds and structures can exist [27]. On the other hand, carbon nitrides are widely used in hardness and photoelectric materials. Therefore, systematic studies of the geometries and electronic structures of carbon nitride clusters

E-mail address: xlzhu@njut.edu.cn (X. Zhu).

1386-1425/\$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2006.07.055 are very significant for gaining insight into the growth mechanism of carbon nitride nanomaterials.

So far, there are no theoretical and experimental data available on geometries and low-lying electronic states of metastable C_2N_4 (m- C_2N_4) cluster. In this work, the low-lying electronic states of m- C_2N_4 and its ions have been investigated using the CASSCF and DFT(B3LYP)/CCSD(T) methods. The Mulliken populations, leading configurations, compositions of molecular orbitals, and bond orders are employed to explore the nature of bonding in these clusters. The ionization energies, electron affinities, and binding energies of m- C_2N_4 cluster, the anion photoelectron spectra of the corresponding anion cluster are also predicted, which can provide some useful information for experimental study of this cluster. On the other hand, it is interesting to note that the relative energies of the low-lying electronic states of m- C_2N_4 linearly depend on the amount of charge transfer between C and N atoms.

2. Methods of calculation

In order to search the low-energy isomers of C_2N_4 , the initial structures of C_2N_4 are set at various possible structures. Then, these structures are fully optimized at the DFT(B3LYP) level. Finally, the CCSD(T)/6-311 + G(d) method is used to calibrate

^{*} Corresponding author at: College of Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China.

Fig. 1. Equilibrium geometry for the low-lying electronic states of metastable C_2N_4 (m- C_2N_4) with C_{2h} symmetry.

the energies of these structures. So far, 15 low-energy isomers have been found. The structure of a metastable C_2N_4 (m- C_2N_4) is shown in Fig. 1. Other low-energy isomers of C_2N_4 obtained at the DFT level are to report elsewhere.

First-principle calculations [26] predict that β -C₃N₄ crystal is a metastable structure. In fact, carbon nitrides have several metastable structures [27] as mentioned above. It can be predicted that the metastable m-C₂N₄ cluster will be obtained and studied experimentally.

In this work, we focus on the m- C_2N_4 with C_{2h} point group. The initial structures of the low-lying electronic states of m- C_2N_4 , cation, and anion are set at C_{2h} symmetry. First, optimizations are carried out on these structures with the constraint of C_{2h} point group at the CASSCF level. Second, the CASSCF geometries are further optimized at the DFT(B3LYP) level. Then, vibrational frequency calculation is performed at the same level to examine whether the optimized structures of these states are stable or not. Finally, in order to obtain accurate energy ordering, the energies of these states are calibrated at the CCSD(T)/RECP and CCSD(T)/6-311 + G(d) levels, respectively.

The relativistic effective core potentials [30-32] (RECPs) are applied that retains the outer $2s^22p^2$ and $2s^22p^3$ shells of C and N atoms in the valence space, respectively. The rest electrons are replaced by the RECPs. Gaussian basis sets are taken from Ref. [33]. The RECPs basis sets of both C and N are (4s4p). In the CASSCF calculations, 28 valence electrons of the neutral m-C₂N₄ (27 for cation, 29 for anion) are distributed in all possible ways among 17 active orbitals, which includes 7a_g, 6b_u, 2a_u, and 2b_g orbitals.

The CASSCF and DFT/CCSD(T) computations are performed using GAMMESS [34] and GAUSSIAN [35] packages, respectively.

3. Results and discussion

Fig. 1 displays the optimized structure of the low-lying electronic states of m-C₂N₄, which exhibits a planar geometry with C_{2h} symmetry at the CASSCF and DFT levels. Table 1 displays the optimized geometry parameters of the low-lying electronic states of $m-C_2N_4$. It is not difficult to see from Table 1 that there is no large Jahn-Teller distortion upon electron excitation. As shown in Table 1, the values of $A_1(N_5-N_6-C_2)$, or $N_6-N_5-C_1$) are between 99.9 and 138.6°, demonstrating that the N₅ (or N₆) atoms exhibit sp^2 hybridization, while the values of $A_2(N_4-C_2-N_6 \text{ or } N_3-C_1-N_5)$ are between 169.4 and 180°, suggesting that C_2 (or C_1) atoms exhibit sp hybridization. The N₅-N₆ bond distances for the electronic states listed in Table 1 are 1.216–2.583 Å, which are longer than the N–N bond length (1.118 Å) of N₂ molecule as expected. The N₆-C₂ bond distances are 1.252-1.363 Å, while the N₄-C₂ bond distances are 1.175–1.264 Å. The C–N bond length in isolated CN cluster is 1.259 Å at the DFT(B3LYP)/RECP level. It reveals that C_2-N_6 bonding interaction is weakened when the N₆ and C₂ atoms are combined with N atoms, while N₄-C₂ bonding interaction is enhanced when the C_2 atom is combined with the N_6 atom. The bond orders between atoms in m-C₂N₄, m-C₂N₄⁻, and m- $C_2N_4^-$ are listed in Table 2. It is interesting to find from Table 2

Fig. 2. Correlation of summation of $bo(N_5-N_6)$ and $bo(N_4-C_2)$ with $bo(C_2-N_6)$.

Download English Version:

https://daneshyari.com/en/article/1238344

Download Persian Version:

https://daneshyari.com/article/1238344

Daneshyari.com