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The ChemCam instrument on theMars Curiosity rover is generating thousands of LIBS spectra and bringing inter-
est in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibra-
tions that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical
composition. Here, LIBS spectral data are analyzed using linear regressionmethods including partial least squares
(PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso),
elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear
regressionmethods including kernel principal component regression (K-PCR), polynomial kernel support vector
regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for
interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100
samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests
were employed to evaluate the statistical significance of differences among the ninemodels using their predicted
residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models
outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce
inferior results, likely because their emission lines in this energy range have lower transition probabilities. The
strong performance of the sparsemethods in this study suggests that use of dimensionality-reduction techniques
as a preprocessing stepmay improve theperformance of the linearmodels. Nonlinearmethods tend to overfit the
data and predict less accurately, while the linearmethods proved to bemore generalizable with better predictive
performance. These results are attributed to the high dimensionality of the data (6144 channels) relative to the
small number of samples studied. The best-performing models were SVR-Lin for SiO2, MgO, Fe2O3, and Na2O,
lasso for Al2O3, elastic net forMnO, and PLS-1 for CaO, TiO2, and K2O. Although these differences inmodel perfor-
mance betweenmethods were identified, most of themodels produce comparable results when p≤ 0.05 and all
techniques except kNN produced statistically-indistinguishable results. It is likely that a combination of models
could be used together to yield a lower total error of prediction, depending on the requirements of the user.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A laser-induced breakdown spectrometer (LIBS), along with a
remote microscopic imager, comprises ChemCam [1,2], a payload
instrument on the Mars Science Laboratory (MSL) rover Curiosity. This
LIBS instrument records emission spectra in the ultraviolet (UV), violet
(VIO), and visible to near-infrared (VNIR) ranges. The laser can be
focused on a small location size of roughly b0.5 mm from a standoff
distance of up to 7 m. ChemCam is being used to determine chemical
compositions of dust, rocks, and minerals on the Martian surface.

To aid in such quantitative analyses, a broad training set of LIBS spectra
of geological standardswith known compositions is beingdeveloped for
calibration [3]. The goal of ChemCam is to produce robust, accurate
chemical analyses of minerals, rocks, and soils on the Martian surface.

However, producing quantitative chemical analyses from LIBS data
is a challenging task due to the wide variety of chemical compositions
found on Mars. Ionization states from the many different elements
found in geological materials may interact in the LIBS plasma, causing
variations in line intensities that defeat univariate analysis techniques
using single-peak calibrations of intensity vs. concentration. Multivari-
ate analysis techniques are thus needed to account for the covariate
interactions that occur within the LIBS plasma. They are designed to
provide stable models when the data suffer from multicollinearity,
and are better suited to LIBS data analysis.
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Thus, this paper explores a variety of current machine learning
algorithms for regression problems and compares their performance
on a suite of 100 spectra from igneous and meta-igneous rocks. LIBS
spectral data are analyzed here using linear methods including partial
least squares (PLS-1 and PLS-2), principal component regression
(PCR), least absolute shrinkage and selection operator (lasso), elastic
net, and linear support vector regression (SVR-Lin). These were
compared against results from nonlinear methods including kernel
principal component regression (K-PCR), polynomial kernel support
vector regression (SVR-Py) and k-nearest neighbor (kNN) regression
to discern the most effective models for interpreting elemental
concentration from LIBS spectra of geological samples. Ten-fold
cross-validation was used to train the parameters and tune the
hyperparameters of each model using 70 samples while 30 samples
were held out for use as a test set. Wilcoxon signed-rank tests were
employed to evaluate the statistical significance of differences
among the ninemodels using their predicted residual sum of squares
(PRESS) to make comparisons. Results show the advantages of linear
models for this application, and lend insights into best practices for
interpretation of data from ChemCam and other LIBS studies of geo-
logical samples elsewhere in the solar system.

2. Background

LIBS relies on quantized valence-electron transitions that occur
when the electrons move to an excited state in the presence of an
excitation source and subsequently decay back down to their ground
states, emitting photons. When these transitions are detected by a
spectrometer, emission lines are observed at wavelengths that are
specific to the elemental or ionic electron source.

LIBS is challenging to use for geological sample analysis because
peak intensities and areas are influenced by interactions in the plasma
that are partially a function of the sample's chemical composition.
These interactions are collectively referred to as matrix effects; they

are chemical properties of a material that influence the extent to which
a given wavelength emission is detected compared to the true abun-
dance of the parent element. Thematrix effects are related to the relative
abundances of neutral and ionized species within the plasma, collisional
interactions within the plasma, laser-to-sample coupling efficiency, and
self-absorption [4]. Fortunately, advanced statistical analysis techniques
can tease out relationships that may be obscured by matrix effects.

Multivariate analyses have been used increasingly for LIBS over the
last decade, starting with the applications of principal components [5]
and partial least squares [4–10]. A few other methods have been inves-
tigated, such as artificial neural networks (ANN) [11]; however, results
showed that PLS was equivalent or superior to ANN. A few forays have
beenmade into the sparser models (lasso) [12] and intelligent selection
or rejection of training set spectra based on clustering methods [11].
Both of these show promise in improving results, particularly with clus-
tering, and in more closely connecting themodels with physical details,
i.e., with lasso predominantly using the emission lines of the element of
interest. Here we follow up on these works by comparing and contrast-
ing additional methods for providing sparseness to the data.

An ideal regression model for LIBS should be sparse, interpretable,
and well predicting. The property of sparsity, in which a small subset
of predictor variables drives the prediction results, can be critical to
instrument design because it may enable improved count rates and
higher-resolution spectra by guiding sampling to fewer channels more
frequently. It may not, however, enable model interpretation, because
the chosen features are dependent upon a complicated convolution of
end-member oxide spectra, experimental conditions, andmeasurement
errors [13–15]. In this paper, several multivariate analysis techniques
that meet these criteria to varying degrees are utilized and compared
to assess the effectiveness of each model and the effects of training set
size on the resultant predictions.

Table 1 provides a summary of themethods considered in this study.
The following discussion provides some background on the techniques
to be compared.

Table 1
Summary of models used.

Method Summary Tuning
parameters

Advantage(s) Disadvantage(s) Other

PLS Projects explanatory matrix, X, into a
subspace of latent components that
maximize the covariance of X and the
response matrix, Y.

k, # of
components

Used when X has many collinear features
and when pN N N. Provides a stable
multivariate model that can account for
all oxides (PLS-2).

Provides a complex model in which all
coefficients are linear combinations of
the original channels. Involves a complex
optimization problem with no simple,
closed-form representation.

Linear, uses
all channels
(not sparse)

Lasso Shrinks some coefficients and sets others
equal to zero in accordance with shrinkage
parameter. Provides a sparse model that
can be used for both feature selection and
composition predictions.

α, sparsity
weight

Provides an interpretable model, selects
subset of predictors with the strongest
effects on the response variable. Can be used
for feature selection when less data are
available.

Arbitrarily chooses one covariate from
a group of highly collinear covariates to
use in the model and discards the rest
[18].

Linear,
sparse,
eliminates
noisy
channels

Elastic
net

Extends the lasso. Shrinks some coefficients
and sets others equal to zero; averages
highly correlated features and shrinks
averages. Provides a sparse model that has
more terms than the lasso and can be used
for feature selection and composition
predictions.

α and l1
ratio

Performs well in the p NN N case. Provides an
interpretable model that is more stable than
the lasso. Useful for feature selection.

Cannot be used for feature selection in
situations when less data are available
because it overwhelms the data with too
many model variables.

Linear,
sparse,
eliminates
noisy
channels

PCR Projects data to a low-dimensional
uncorrelated subspace, then uses ordinary
least squares to regress in the latent space.

k, # of
components

De-correlates the data and reduces its
dimensionality, combating the “curse of
dimensionality”

Higher order polynomial kernels tend to
over-fit the training set and poorly
predict the testing set in this application.

May be
linear or
nonlinear;
both use all
channels

SVR Uses only a subset of the training data
(support vectors) to construct a model that
is most generalizable. Can be linear or non-
linear depending on the kernel function
used.

ϵ, sensitivity Performs well with a linear kernel. Can be
either linear or nonlinear depending on
the kernel.

As above, polynomial kernels tend to
over-fit the training set and poorly
predict the testing set in this application.

May be
linear or
nonlinear;
either uses
all channels

kNN A nonlinear regression model that predicts
samples using a weighted interpolation of
the k nearest training samples.

k, # of
neighbors

Requires no model training other than
choosing the number of neighbors, reducing
run time and making it scale well to large
data sets.

Tends to over-fit the training data and is
only as effective as the distance metric
used to compare samples.

Nonlinear,
uses all
channels
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