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The effects of polynomial interpolation and internal standardization drift corrections on the inter-measurement
dispersion (statistical) of isotope ratios measured with a multi-collector plasma mass spectrometer were inves-
tigated using the (analyte, internal standard) isotope systems of (Ni, Cu), (Cu, Ni), (Zn, Cu), (Zn, Ga), (Sm, Eu),
(Hf, Re) and (Pb, Tl). The performance of five different correction factors was compared using a (statistical)
range based merit function ωm which measures the accuracy and inter-measurement range of the instrument
calibration. The frequency distribution of optimal correction factors over two hundred data sets uniformly fa-
vored three particular correction factors while the remaining two correction factors accounted for a small but
still significant contribution to the reduction of the inter-measurement dispersion.
Application of the merit function is demonstrated using the detection of Cu and Ni isotopic fractionation in
laboratory and geologic-scale chemical reactor systems. Solvent extraction (diphenylthiocarbazone (Cu, Pb)
and dimethylglyoxime (Ni)) was used to either isotopically fractionate the metal during extraction using the
method of competition or to isolate the Cu and Ni from the sample (sulfides and associated silicates). In the
best case, differences in isotopic composition of ±3 in the fifth significant figure could be routinely and reliably
detected for Cu65/63 and Ni61/62.
One of the internal standardization drift correction factors uses a least squares estimator to obtain a linear
functional relationship between the measured analyte and internal standard isotope ratios. Graphical analysis
demonstrates that the points on these graphs are defined by highly non-linear parametric curves and not two
linearly correlated quantities which is the usual interpretation of these graphs. The success of this particular
internal standardization correction factor was found in some cases to be due to a fortuitous, scale dependent,
parametric curve effect.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Signal drift is a feature common to all types of analytical plasma
spectrometers and is particularly problematic for mass spectrometry
because the plasma to mass spectrometer interface exposes sensitive
parts of the instrument (ion lenses, sampler and skimmer) to fouling
during sample analysis [1,2]. Theneed to accurately and reliably account
for the drift error is particularly acute for stable isotope ratios where
inter-measurement variances of ≤±1 × 10−5 may be necessary for
some applications [3]. The physical causes of signal drift in plasma
spectrometers are rarely identified, monitored or controlled and
there are many possible causes [1,2,4]. Diagnostic techniques have
been developed [5,6] but usually a mathematical correction is used
to account for the determinate error caused by the drift [4,7–13]. A

peculiar (and unexplained) feature of signal and signal quotient
drift is the wide range of curve shapes reported in both plasma optical
emission and plasmamass spectrometry [9,10,13]. The order n of inter-
polating polynomials ranges up to the sixth power for signal and signal
quotient drift curves in plasma spectrometry and changes from day-to-
day.

The origins of the complexity of signal and signal quotient drift
curves can be readily understood. Let the signal be represented by a
multi-dimensional signal response surface S(x0, x1, …, xp) where the
x's represent the physical factors (pressure, temperatures, voltages,
etc.) which affect the signal strength. Drift is represented by considering
the x to be time dependent variables x(t). The x(t) are assumed to be of
the form x(t) = Σantn [7]. Generally there is no physical reason to re-
strict the value of n for any x(t). When n N 0 for one or more of the
x(t) then the time-ordered set of (x0(t), x1(t), …, xp(t)) points defines
a single parametric curve (the hardware drift line) on the coordinate
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axis plane of S. The intersection of the perpendicular projection of
the hardware drift line onto the surface S yields a set of time ordered
points (t, S(t)) which defines the signal drift curve of a run. If all the
x(t) have n N 0 then the signal drift curve meanders over the surface.
If at least one of the x(t) is constant k, (e.g., sampling position in the
plasma) then the hardware drift curve is a straight line along which
the time ordered set of (k, x1(t), …, xp(t)) travel, changing direction
and speed along this line according to the parametric hardware drift
curve defined in exclusion of any constant x(t) (i.e., the time-ordered
set of (x1(t), …, xp(t)) points). This is the usual experimental situation
in analytical plasma spectrometry.

Parametric curves arewell-known for their utility in obtaining exotic
curve shapes (Lissajous figures, cycloids etc.) useful in engineering ap-
plications. That same property could be a disadvantage for analytical
work since the hardware drift line may contain many points where
the slope is undefined or zero with corresponding discontinuities in
the curve defined by the set of points (t, S(t)). It is known in plasma
spectrometry that level curves of the signal with respect to changes in
a primary instrument signal response factor (rf power, nebulizer
pressure, plasma sampling location) are typically concave downward
signal response functions of the x [14–18]. A typical operating
point is usually located close to the global maxima where the
change in S per unit step along the coordinate axis (in any direction)
is relatively small. Also, plasma spectrometers usually have signal
drift rates of a fraction of a percent per hour. The combination of a
shallow gradient and small drift rate attenuates the effect that the
abrupt changes in the slope of the hardware drift line have on the
continuity of the curve defined by the set of points (t, S(t)). In this
situation signal drift curves are usefully approximated as a polynomial
[9,13].

The signal quotient Si(t)/Sj(t) is a rational functionwhich, in general,
cannot be approximated as a polynomial except underwell-defined cir-
cumstances. Consider the case where x(t) represents the nebulizer gas
pressure P. On the multi-collector instrument isotope ion signals of
the same element may have a very small offset between the ordinate
values of the maxima of two isotope ion signals Si(P) and Sj(P) but the
orders of the polynomials of Si(P) and Sj(P) are going to be the same
and the normalized curvatures of Si(P) and Sj(P) are identical when i
and j are of the same element [18]. Under those conditions the rational
function Si(P)/Sj(P) is well-approximated by a polynomial function of P
at operating points in the neighborhood of the level curve maxima [18].
On the assumption that this approximation is true of the other x(t), a
polynomial approximation of Si(t)/Sj(t) is analytically useful. For
example, consider the signal response surface defined as S(x0(t),
x1(t)) = exp(−((x0(t))2 + (x1(t))2 − k x0(t)x1(t)) where k is a real
constant N 0, x0(t) and x1(t) are linear and quadratic functions respec-
tively. S is a simplified form of the bivariate Gaussian function which
has approximately the correct shape. Over restricted ranges of t the
isotope ratio curves, IR(t) = Si(t)/Sj(t), are very well-approximated
(r2 = 1.0) by polynomials (Fig. 1). Small changes in the coefficients of
S and the x(t) resulted in the polynomial order of Si(t)/Sj(t) ranging
from the first to the sixth order. This is a typical range for signal ratios
at run times of several hours [9].

There is also the difficulty of the stability of the rational function
Si(t)/Sj(t). Small errors in the values of the coefficients of Si(P) and
Sj(P) can result in large errors in the calculated quotient [18] and this
is referred to as the rational function effect. This effect would be poten-
tially troublesome for signals which are drifting according to Σantn even
if the correction calculations use the raw isotope ratios rather than
correcting the signals themselves; the underlying rational function
effect is still present in the ratio data.

1.1. Ratio drift correction factors

In general, the simplest choice among possible drift correction factors
is between interpolating polynomials and internal standardization.

Define the drift correction factor, R(t), as R(t) = IR(t)/IRT where IR(t)
is the value of an isotope ratio (measured or calculated) at time t and
IRT is the known value. The polynomial drift correction factor is

RA tð Þ ¼
X

ant
nÞ= IRAð ÞT

� �
Std

�
ð1Þ

where the subscript A refers to the analyte, ((IRA)T)Std is the knownvalue
of the analyte ratio in the reference ratio solution. Although this equation
is innocuous enough the model selection problem [19–22] becomes an
issue for multi-collector isotope ratio measurements. The probability
density functions of S and IR are unknown, non-Gaussian distributions
[18] and the usual statistical techniques for optimizing the value of n
(which were developed for Gaussian variables) are not applicable
(see Section 1.2) and possibly not very useful for isotope ratiomeasure-
ments using a multi-collector instrument (see Section 3.4). Optimiza-
tion of n is discussed after the merit function ωm is introduced in
Section 3.2.

The internal standardization drift correction factor is, from the defi-
nition of R(t),

RA tð Þ ¼ k tð Þ IRA tð Þ=IRIS tð Þð Þ

where the subscript IS refers to the internal standard, k(t) =
RIS(t) ∗ ((IRIS)T / (IRA)T)Std, RIS(t) is always known and the quotient
of the true ratios in the reference ratio solution is a known constant of
the run. There are two possible RA(t) factors:

i) using the optimized least squares solutions of IRA(t) and IRIS(t) from
Eq. (1), the value of RA(t) is

RA tð Þ ¼ k tð Þ ∑ant
n
=∑bmt

m� � ð2Þ

ii) alternatively

RA tð Þ ¼ k tð Þ
X

ant
n ð3Þ

where the rational function of Eq. (2) is now being represented by a
least squares fitted polynomial rather than using the experimentally
determined rational function (Eq. (2)).

Fig. 1. Calculated values of Si(t)/Sj(t) where Si(t) and Sj(t) are calculated as S(x0(t),
x1(t)) = exp(−((x0(t))2 + (x1(t))2 − kx0(t)x1(t)) and x0(t) = a1t + 1, x1(t) = t2 +
t+ 1. Values of k for Si and Sj were 0.99 and 0.995 respectively. The least squares polyno-
mial regression lines of (t, IR(t)) found n = 5, r2 = 1.0. The values of a1 for x0(t) are 1.0
(squares), 0.8 (circles) and 0.6 (triangles).
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