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The work presented herein suggests that the limit of quantitation concept may be rendered substantially less
ambiguous and ultimately more useful as a figure of merit by basing it upon the significant figure and relative
measurement error ideas due to Coleman, Auses and Gram, coupled with the correct instantiation of Currie's
detection limitmethodology. Simple theoretical results are presented for a linear, univariate chemicalmeasurement
system with homoscedastic Gaussian noise, and these are tested against both Monte Carlo computer simulations
and laser-excited molecular fluorescence experimental results. Good agreement among experiment, theory and
simulation is obtained and an easy extension to linearly heteroscedastic Gaussian noise is also outlined.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Limits of quantitation have always been overshadowed by decision
levels and detection limits. The decision level is simply the level above
which it is highly improbable to find a true net blank response, while,
following Currie [1], the detection limit is such that analyte present at
the detection limit is highly unlikely to go undetected. But the quantita-
tion limit is far less well formed as a concept. Currie's “10σ” definition
of it was simple, but has no fundamental justification: he simply refer-
enced Adams et al. [2] as a reasonable source of the factor of 10. Like-
wise, the 1980 publication from the ACS Committee on Environmental
Improvement simply defines the factor as 10 [3, p. 2247].

In 1970, Kaiser [4] provided a plausible justification of the factor
based on Tschebyscheff's inequality, but that highly conservative
bounding inequality is essentially a “last resort”: it applies even when
nothing at all is known of the distribution of the noise.With exceptions,
analysts nowadays usually have some knowledge of the relevant noise
distribution, thereby enabling more efficient and effective use of
experimental data. Furthermore, the rise of nonparametric method-
ologies, such as that of the receiver operating characteristic [5], has
also mitigated against the coupled use of efficient methods with
Tschebyscheff's inequality.

Not surprisingly, numerous other definitions of the limit of quantita-
tion (LOQ) have arisen since 1980 and find continued publication pop-
ularity. Mermet's thorough and cogent 2008 survey of LOQ definitions,
methodologies and usages in atomic spectrometry revealed a remark-
ably complicated situation, with no less than 5 distinct varieties of
LOQ [6]. AlthoughMermet provided a helpful comparison of the relative

advantages and disadvantages of the surveyed LOQ methodologies,
he concluded that [6] “any LOQ can be selected, provided that both se-
lection and procedure are clearly justified in relation to the analytical
needs defined for method validation. Analytical chemistry is a science
of rigor, and there is no reasonwhy LOQ,which is a crucial characteristic
of an analyticalmethod, should escape from this rigor.” Yet apparently it
has escaped: in the absence of an explicitly stated, compelling, a priori
reason for the use of an LOQ in general, analysts have free rein to
construct new LOQ definitions or alter existing ones. This seriously
undermines the utility and validity of LOQs asfigures ofmerit, especially
given the difficulty in interconverting results obtained with the various
LOQ methodologies. Indeed, Mermet et al. [7] have since provided a
detailed study of yet another possibility for quantifying LOQs: the
“accuracy profile” method. At the very least, this indicates that none of
the previously surveyed LOQ methodologies [6] are obviously superior.

At the risk of adding yet another variant LOQ definition to the
current collection, one possible route to standardization of the LOQ is
to employ a prescient idea put forth by Coleman, Auses and Gram in
1997 [8, p. 78]: the LOQ “is the lowest concentration at or above
which … measurements have at least 1.0 significant digit (at high
confidence), and, equivalently, have limited relative measurement
error, RME ≤ 5%.” This, then, may constitute the fundamental reason
for the formulation and usage of the LOQ concept, regardless of the
specifics of any particular LOQ methodology. Clearly, if existing LOQ
formalisms were brought into compliance with this requirement,
it would facilitate meaningful comparisons of LOQs and promote their
use as figures of merit.

Coleman et al. provided a detailed and carefully reasoned exposition
of their idea, and developed it in the context of relative measurement
error (RME) and fractional significant figures. However, they also used
the disadvantageous Hubaux and Vos detection limit methodology [9]
to find a relationship between their LOQ definition and the Hubaux
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and Vos detection limit. Subsequently, Voigtman demonstrated, in a
series of publications [10–16], the optimum implementation of Currie's
program and it has since become clear (vide infra) that it is the relation-
ship between the LOQ and the Currie decision level, not detection limit,
that is of primary utility.

2. Theory

We assume the chemical measurement system is univariate and
linear in chemical content, X:

Y ¼ α þ βX þ noise ð1Þ

where α is the true intercept, β is the true slope and Y is the true
response. Systematic error is assumed to be zero. The noise is additive,
Gaussian white noise (AGWN) on Y and is homoscedastic, i.e., σ(βX) ≡
σ0, where σ0 is the population standard deviation of the noise on the
blank. As a consequence of the noise, a single measured response, yi,
at any arbitrary value of X, is simply a random sample from a Gaussian
(aka “Normal”) distribution centered at α + βX and having population
standard deviation σ0. If ideal blank subtraction is performed, to obtain
the net response, then this simply means that the errorless value α is
subtracted from yi, so the net response, yi − α, is a random sample
of a Gaussian distribution centered at βX, with population standard
deviation σ0. The shorthand notation for this is (yi − α) ∼ N: βX,σ0,
where “~” means “is distributed as”.

Ifα is unavailable, as is typically the case, then blank subtractionmay
be performed by subtracting α̂, an unbiased estimate of α. Then yi−α̂ð Þ
∼N : βX;σd , where σd is the population standard deviation of the
difference. The relationship between σd and σ0 is σd = η1/2σ0, where
the factor η1/2 is of the general form:

η1=2 ≡ 1
M

þ error term sð Þ due to α̂
� �1=2

ð2Þ

withM being thenumber of future blankmeasurements. Optimally,M is
defined as unity, so that η1/2 = 1 only if ideal blank subtraction is
performed and is otherwise greater than unity.

For maximum generality, it will be assumed that non-ideal blank
subtraction is performed, i.e., α̂ is used for blank subtraction even if β
and σ0 are known. Therefore, a single net response at βX will be a
random sample fromN:βX,σd. As iswell known, there is a 95%probabil-
ity, overmany repetitions of the process, that the net responsewill be in
the (central) 95% confidence interval (CI) defined by βX± zp′σd, where zp
′ ≡ z0.025 ≅ 1.959964. Following the lead of Coleman et al. [8], the abso-
lute measurement error is arbitrarily defined as zp′σd, i.e., the half-width
of the 95% CI, and themaximum relativemeasurement error, RME(X), is

RME Xð Þ ≡ z0pσd

βX
≅1:96σd

βX
ð3Þ

while still remaining within the 95% CI. Note that the RME is simply
defined as the half-width of the confidence interval, divided by its center
value. As noted above [8], in order for the LOQ to guarantee at least
one significant figure, RME(X) must not exceed 0.05. Therefore, the
theoretical, content domain LOQ, denoted by XQ, is defined as that
value of X such that RME(XQ) ≡ 0.05. Hence

XQ ≡
z0pσd

0:05β
¼ 20

z0pσd

β
¼ 20

z0pη
1=2σ0

β
≅39:2η

1=2σ0

β
ð4Þ

since σd = η1/2σ0. However, the theoretical, content domain Currie
decision level is defined as

XC ≡
zpη

1=2σ0

β
ð5Þ

where zp is the critical z value for probability p of false positives [10].
Typically, p ≡ 0.05, so that zp = z0.05 ≅ 1.6448536. As a result,

XQ ¼ 20
z0p
zp

XC≅
39:2
zp

XC : ð6Þ

In the theoretical, net response domain, YC = βXC and likewise
YQ = βXQ. Hence,

YQ ¼ 20
z0p
zp

YC≅
39:2
zp

YC : ð7Þ

Values of zp are easily found using Microsoft Excel, i.e., zp =
−NORMSINV(p), or via standard tables.

The experimental, content domain decision level, xC, is given
by [10,11]

xC ≡
tpη

1=2s0
b

ð8Þ

where b is an experimentally determined, unbiased estimate of β,
s0 is the sample standard deviation determined with ν degrees
of freedom (dof) and tp is the critical t value for probability p of
false positives and ν dof. Then the corresponding experimental,
content domain LOQ, denoted by xQ, is

xQ ≡
t0pη

1=2s0
0:05b

¼ 20
t0pη

1=2s0
b

¼ 20
t0:025η

1=2s0
b

ð9Þ

where tp′ is the critical t value for 95% confidence (analogous to
z0.025 = 1.96) with v dof. Combining Eqs. (8) and (9) then yields

xQ ¼ 20
t0p
tp
xC ð10Þ

with ν dof for both critical t values. In the experimental, net response
domain, yC = bxC and yQ = bxQ. Therefore

yQ ¼ 20
t0p
tp
yC : ð11Þ

Values of tp are easily found using Microsoft Excel, i.e., tp =
TINV(2p,ν), or via standard tables.

Fig. 1 collects together Eqs. (6), (7), (10) and (11), and also gives the
Currie decision level expressions (“C” subscripts) and detection limit
expressions (“D” subscripts) in all four detection quadrants. The critical
values zq and tq in the detection limit expressions are for probability q
of false negatives. These are correct and unbiased for all degrees of
freedom, includingν=1.Note that all of the theoretical domain expres-
sions are errorless real numbers that require population parameters
(i.e., true values, since systematic error is assumed to be negligible),
while the expressions in quadrant 2 areχ variates and those in quadrant
4 are modified noncentral t variates [10,11].

3. Computer simulation

The theory presented above is very simple and perfectly suited
to testing via computer simulation. Accordingly, the following ideal
model parameters were used, ignoring units: α ≡ −0.05, β ≡ 3.85,
σ0 ≡ 0.03, p ≡ 0.05, zp ≅ 1.644854, p′ ≡ 0.025, zp′ ≡ z0.025 ≅ 1.959964,
M ≡ 1 future blank replicate, and α̂ the sample mean of N = 7
i.i.d. blank replicates. In this case η1/2 ≡ [M−1 + N−1]1/2 =[1
+ (1/7)]1/2 ≡ 1.069045, so that, from Fig 1, XC = zpη1/2σ0/β ≅
0.013702 and XQ = 20(zp′/zp)XC ≅ 0.3265386.

Fig. 2 shows two different simulation programs designed to test the
model and its theoretically predicted XQ. The upper half of Fig 2 shows a
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