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Using a simple UV LED-excited ruby fluorescence measurement system, we demonstrate that it is easily possible
to obtain unbiased detection limits, despite the system deliberately having non-linear response function and
non-Gaussian noise. Even when the noise precision model is heteroscedastic, but otherwise only roughly linear,
the receiver operating characteristic (ROC) method readily yields results that are in accordance with a priori
canonical specifications of false positives and false negatives at the detection limit. The present work
demonstrates that obtaining unbiased detection limits is not abstruse and need not be mathematically
complicated. Rather, detection limits continue to serve a useful purpose as part of the characterization of
chemical measurement systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Detection limits (DL) evoke a variety of responses from experienced
analysts. For example, Coleman and Vanatta state “We believe that
detection limits should go away. …. The concept of DLs is an artificial
one that has roughly as many definitions and formulations as there
are people who talk about and calculate such numbers. …. Inevitably,
discussions devolve into a quest for the detection limit; such a value
does not exist!” [1]. In a similar vein, Thompson has argued [2] that
detection limits are hard to interpret and lead to misconceptions
about themeasurement process, and therefore should bedeemphasized
in favor of, e.g., “characteristic functions”.

Frankly, we cannot agree with the above, for one compelling reason:
themajority of perceived detection limit issues stem from thepublished
literature on the topic being substantially greater than is merited by its
knowledge content. This has led to misconceptions, contradictions, and
even sanctioned protocols that are demonstrably biased.

In contrast to the above, Voigtman has demonstrated [3–9] that
when a real chemical measurement system (CMS) is well modeled as
being univariate, with linear response function, and having additive,
Gaussian, white noise (AGWN) as its dominant measurement noise,
then Currie's detection limit program [10] may be instantiated quite
easily. Several types of heteroscedastic noises were examined in detail,
including the “hockey stick” noise precision model (NPM) favored by

Thompson and Ellison [11], along with homoscedastic AGWN. The
keys to correctly instantiating Currie's program were the elimination
of several plausible long-standing obstructions, plus extensive use of
Monte Carlo computer simulations that served to test derived theory
and facilitate understanding results from real laser-excited molecular
fluorescence experiments that were performed.

Some analysts have questioned the applicability of detection limit
theory that assumes, perhaps too uncritically, that a given real CMS
necessarily and accurately satisfies all of the requisite conditions upon
which the theory is predicated [12]. What would happen if, e.g., the
response function was non-linear or the noise was non-Gaussian?

Beyond question, this is a valid concern in some cases. However, it
has always been incumbent upon experimentalists to exercise their
seasoned judgment in deciding whether or not a given relevant theo-
retical assumption has been accurately satisfied in a real experiment.
In the final analysis, some judgment on the part of the experimentalist
will always be required. Even so, this raises an important question:
“Assuming a univariate CMS, what are the minimum conditions that
must be satisfied in order to obtain unbiased detection limits, as per
Currie's program [10]?”

One answer is to use a well-studied non-parametric methodology,
such as that of the receiver operating characteristic (ROC). Originally
developed for radar applications during World War II, ROCs are robust,
relatively easy to use, and provide a wealth of useful ancillary informa-
tion, e.g., “area under curve”. Fraga et al. [13] appear to have been the
first to employ ROCs in determining realistic LODs in real world che-
mical sensing systems. Their paper provides a short, but comprehensive,
survey of ROC background information. More recently, Fonollosa et al.
[14] employed both ROCs and fundamental information theory prin-
ciples in their detection limit studies. However, they coupled these
with what we consider to be an inapplicable Bayesian analysis: Currie's
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program is fundamentally a dichotomous Neyman–Pearson prob-
lem [10,15], with no priors or costs.

Quibbles aside, these papers demonstrate that ROCs provide a
powerful means to study limits of detection in CMSs. The purpose of
the present work is to demonstrate the main advantage of ROCs, using
a real CMS that is almost as simple as possible, yet is deliberately
designed to violate the customary simplifying assumptions of linear
response function and AGWN. Toward this end, a UV LED-excited ruby
laser rodfluorimeterwas constructed and used to provide the necessary
data for two separate experiments: one with homoscedastic noise and
the otherwith approximately linearly heteroscedastic noise. For brevity,
these are referred below as HOM and HET, respectively.

2. Theoretical

2.1. General background

Limits of detection are fundamentally based on probabilities of both
false positives (Type 1 errors) and false negatives (Type 2 errors) [10].
Everything else associated with the accurate determination of LODs
for a CMS is strictly subordinate to, and in the service of, achieving a
priori specified probabilities of these two types of mis-categorization
errors. As noted above, there is no particular difficulty in instantiating
Currie's program when a real CMS is well modeled as being univariate,
with linear response function, and having AGWN as its dominant
measurement noise. In practice, the common simplifying assumptions
are often reasonably well approximated, due to both deliberate experi-
mental design considerations and the “hidden hand” of the central limit
theorem. Even when they are not satisfied, the theory still serves as an
ideal limiting case for relevant CMSs. However, when the assumptions
are clearly not satisfied, the theory is inapplicable and this is where a
non-parametric methodology excels: elegant models and some statisti-
cal efficiency are sacrificed in favor of robust performance.

2.2. Fluorescence

When a fluorescent substance or medium is appropriately illumi-
nated, it absorbs some of the incident light energy. It subsequently
releases, as emitted light, a portion of the absorbed light energy. The
basic equations, as approximations for the simplest possible case, are

Response λð Þ≅ K1 Iemission λð Þ≅ K2 cfluorophor Iexcitation λð Þ ð1Þ

where Response(λ) is the measured analog or digital response,
Iemission(λ) is the emitted light intensity, cfluorophor is the content (con-
centration or number density) of the fluorescing moiety, Iexcitation(λ)
is the excitation light intensity, λ is the “center” wavelength of the
excitation light's spectral profile and both K1 and K2 are typically com-
plicated composite instrumental factors [16]. In modern commercial
fluorimeter systems, great care is taken to make K1 and K2 as constant
and large as is feasible or economic.

One of themost frequently encountered chemical fluorescencemea-
surement scenarios involves illumination of a fluorophor-containing
specimen with constant intensity light of appropriate constant λ and
then measuring the response as a function of fluorophor content. This
yields a calibration plot, for wavelength λ, which is simply an estimate
of the true underlying response function. It is well known that Eq. (1)
is only a satisfactory approximation if, among other things, neither the
fluorophor content nor the excitation light intensity are excessively
high. As a practical matter, these two restrictions usually pose no signif-
icant difficulty and other factors, e.g., light scattering, interferences, and
pre-filtering and post-filtering effects are more troublesome.

From Eq. (1), the response is functionally similar for cfluorophor and
Iexcitation(λ), i.e., if one of them is held constant, then the other may
serve as the independent variable (i.e., measurand) in a calibration
plot. Accordingly, if cfluorophor were to be held at a suitably low constant

value, and if λwas constant as well, then any non-excessive increase in
excitation light intensity would result in an increased response. In
other words, the response would be a strictly monotonic function
of Iexcitation(λ) and there would be no fluorescence saturation or
“roll-over”. In equation form, this would be expressed as

Response ¼ fmonotonic Iexcitationð Þ: ð2Þ

If the excitation light source is a light emitting diode (LED), then λ is
automatically constant, to an excellent approximation, and Iexcitation is:

Iexcitation ¼ Tfilter sð ÞILED emission intensity ð3Þ

where Tfilter(s) is the constant overall transmittance, at λ, of any optional
optical filters that might be utilized to “clean up” the LED's spectral
profile. The LED light emission intensity is directly proportional to
LED current, i.e.:

ILED emission intensity ¼ K3 ILED current ð4Þ

where K3 is a proportionality constant. Combining Eqs. (2)–(4), the
response is a monotonic function of ILED current:

Response ¼ fmonotonic ILED currentð Þ: ð5Þ

When ILED ≡ 0, the response is that of the “analytical blank.” Note
that since ILED is a current, it is technically a “measurand” rather than
as an “analyte”, but this will be treated as a trivial distinction without
a difference and the terms will be used interchangeably hereafter.

3. Experimental

3.1. Experimental apparatus

A block diagram of the experimental system is shown in Fig. 1, with
component specifications given in Table 1.

Almost all of the components are exactly the same as those used in
previously published work [8], with the notable exceptions of the UV
LED excitation light source and ruby laser rod fluorphor. The UV LED
had peak emission at 397 nm, almost perfectly matched to the strong
ruby Cr3+ absorption band at about 400 nm. A pair of non-fluorescent
blue glass filters removed a low intensity parasitic red emission from
the UV LED and also removed a low intensity green fluorescence from
the LED's plastic encapsulation. A non-fluorescent red glass filter elimi-
nated any transmitted 397 nm light that may have exited the ruby rod
along with the strong 694.3 nm fluorescence emission.

The geometry of the fluorimeter was linear, a configuration that is
never used in any standard fluorimeter for various reasons. It was feasi-
ble in the present case because of the extraordinarily wide separation
between the excitation and emission wavelengths. As a bonus, it had
the advantage that the ruby rod acted as its own light pipe, making for
an extremely simple optical path and instrument. There was no need
for lenses, and, in fact, an aperture had to be added between the red
filter and the photodiode in order to reduce the fluorescence intensity.

3.2. Analog circuitry

A key feature of the experiment is the ability to specify and control
the behavior of the dominant noise. Toward this end, a simple analog
noise generator, shown in Fig. 2 (upper half), was designed to provide
non-Gaussian noise with white power spectral density (PSD). The
lower half of Fig. 2 shows the transimpedance preamplifier and non-
inverting summing amplifier. This circuit is a slightly modified version
of that used previously [8], which, in turn, was slightly modified from
an even earlier version [7]. Relative to the original version [7], two
changes were made: 1) a precision 10 turn potentiometer, buffered
fore and aft with TL071 op amp voltage followers, and 2) a 33Ω resistor
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