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ABSTRACT

Laser Induced Breakdown Spectroscopy (LIBS) is an advanced analytical technique for elemental
determination based on direct measurement of optical emission of excited species on a laser induced
plasma. In the realm of elemental analysis, LIBS has great potential to accomplish direct analysis
independently of physical sample state (solid, liquid or gas). Presently, LIBS has been easily employed for
qualitative analysis, nevertheless, in order to perform quantitative analysis, some effort is still required since
calibration represents a difficult issue. Artificial neural network (ANN) is a machine learning paradigm
inspired on biological nervous systems. Recently, ANNs have been used in many applications and its
classification and prediction capabilities are especially useful for spectral analysis. In this paper an ANN was
used as calibration strategy for LIBS, aiming Cu determination in soil samples. Spectra of 59 samples from a
heterogenic set of reference soil samples and their respective Cu concentration were used for calibration and
validation. Simple linear regression (SLR) and wrapper approach were the two strategies employed to select a
set of wavelengths for ANN learning. Cross validation was applied, following ANN training, for verification of
prediction accuracy. The ANN showed good efficiency for Cu predictions although the features of portable
instrumentation employed. The proposed method presented a limit of detection (LOD) of 2.3 mg dm™3 of Cu
and a mean squared error (MSE) of 0.5 for the predictions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Laser Induced Breakdown Spectroscopy (LIBS) is a type of atomic
emission spectroscopy which employs a highly energetic laser pulse to
simultaneously prepare the sample and excite the species. Usually,
excited species return to their fundamental states emitting character-
istic radiation. The qualitative analysis of emission spectrum provides
the “fingerprint” of sample with regard to its elemental composition
[1].

Using LIBS for element identifications is advantageous in that it
allows direct and fast analysis, besides being almost non-destructive,
since the ablated sample mass for laser pulse is in the order of
micrograms [2,3].
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The main features of LIBS, as for instance, the requirement for a
small amount of sample and minimal sample preparation, are partially
responsible for unsatisfactory figures of merit. Given that a small
amount of material is removed for analysis, the accuracy and precision
can be dependent on the sample homogeneity. Other conditions that
affect the figures of merit are physical parameters, atmospheric
conditions and sample matrix composition [4]. Nevertheless, if
experimental conditions can be well controlled, especially those
dependent of sample and sampling procedure, the LIBS can reach good
precisions. Like other analytical techniques, some inconvenient con-
ditions of analysis can be minimized by using appropriate calibration
standards, which match with the samples. In LIBS, under determined
analysis conditions, the physical parameters and atmospheric condi-
tions can be fixed variables, however matrix effects prove more
difficult to be controlled, owing to the fact that the LIBS signals from
the same element often depend on the matrix in which it is embedded
[2]. Thus, calibration has been an important issue to be considered for
LIBS methods.

The simplest and better known calibration technique is based on
the use of standard calibration curves. It consists in plotting interest
intensity line as a function of known concentration from a set of
calibration standards. Ideally, there will be a linear relationship
between the element response and the mass or concentration over the
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entire range investigated, and a linear fit to the data should pass
through the origin [5]. Nevertheless, calibration curves with a
composition as close as possible to unknown samples are not feasible
for most of the interest samples. In soil analysis, for instance, it is
almost impossible to obtain matching standards calibration with
samples. Moreover, soils from different regions present different
chemical and physical compositions and, consequently, different
matrices. Hence, it increases the difficulty in producing a set of
calibration standards [5,6]. Moreover, the phenomenon of self-
absorption may be considered as factor of linearity deviation in
conventional calibration. This phenomenon is a consequence of loss of
signal at high analite concentrations [5]. For this reason, linear models
can be the most time unsatisfactory.

Methods employing calibration-free algorithm (without use of
calibration curves) proposed by Ciucci et al. [7], have been applied to
dribble matrix effects. Such approach is based on models proposed to
account for the effect of relevant factors associated to the laser
parameters, the sample and its environment [8]. However, this
technique has not been widely considered as a method as it still
needs to be better studied, since the quality of results has been sample
dependent [5].

Chemometric methods have also been applied to different
analytical methods. LIBS technique has increasingly been associated
with these methods, in order to improve its analytical performance
with respect to the standard calibration curve [6]. Chemometric
techniques such as: principal component analysis (PCA), partial least-
squares (PLS) and artificial neural network (ANN) have been applied to
extract spectral information in different analytical techniques [9-13].

ANN is a massive parallel distributed processor that has a natural
propensity for storing experimental knowledge, hence making it
available for use. Due to its superior classification and predic-
tion capabilities, ANNs have found their impact in spectral analysis
[14-16].

This paper focuses on the use of ANN as a calibration strategy for
Cu determination in soil samples using a portable LIBS system.

2. Theoretical
2.1. Laser Induced Breakdown Spectroscopy

LIBS is a simple analytical technique to determine the elemental
composition, which utilizes a focused high energy laser pulse to create
a plasma in a solid, liquid, or gaseous media. In analysis of solid or
liquid samples, part of the energy in the plasma is used to ablate the
material. After the ablation process, the plasma rapidly expands,
sending a shock wave into the surrounding media. In the core of the
plasma, effective temperatures can easily exceed 20,000 K. During this
stage, material in the core of the plasma is vaporized, atomized and
ionized, and the plasma is typically highly ionized. Usually after 0.5 to
1.0 ps, the neutral species in the plasma typically reach local
thermodynamic equilibrium (LTE). From this time, upper electronic
states of atoms and ions are populated in Boltzmann equilibrium
[17,18].

As the plasma cools, continuum emission from the plasma
(Bremsstrahlung emission) fades, typically much faster than emission
lines from neutral and singly-ionized atomic lines. Thus, by adjusting
an optimal temporal detector gating it is possible to collect elemental
emission [19].

2.2. Artificial neural network

The ANN has been motivated right from its inception by
recognizing that the human brain computes in an entirely different
way from the conventional digital computer. The brain is a highly
nonlinear information-processing system and parallel computer. It
has the capacity to organize its structural constituents (neurons) to

perform certain computations (e.g. pattern recognition, perception
and motor control) many times faster than the fastest digital computer
[20].

An ANN represents a computational paradigm that undertakes
solving problems by imitating the structure of human brain. It
involves a network of simple processing elements (artificial neurons),
which can exhibit complex global behavior, determined by the
connections (analogous to synapses in human brain) between the
processing elements and element parameters. In other words, ANNs
are nonlinear statistical models or decision making tools, whose
practical use comes with algorithms designed to alter the strength
(weights) of the connections in the network to produce a desired
signal flow [21].

In Fig. 1 is illustrated a useful scheme of an ANN structured in
layers, like that used in this work. Each layer has a set of neurons and
each neuron has a mathematical function responsible for its
activation. Sigmoidal functions are commonly used for all the neurons.
The first layer receives a set of values, i.e. an input vector containing
the values for measured, variables. The dimensionality of the vector
corresponds to the number of neurons in the input layer. The weights
are a set of numerical values (weight vector) associated with each
neuron for representing its synaptic connections. The knowledge is
codified in weights by means of an algorithm. The inner product
between input vector and weight vector is applied to the activation
function to produce the neuron output. The outputs of a layer are used
as input for the next layer. As result, the output layer provides a value
or a set of values, corresponding to propagation of a set of values from
input layer to output layer (forward phase).

A task is learned for an ANN from a training dataset, which is a set
of input vectors with their respective desired outputs. The procedure
applied to perform the training process is called learning algorithm,
whose function is to modify the weights of the network aiming to
attain a desired goal [20]. During the training process, all the weights
are changed to minimize the error between desired output and ANN
output. The learning paradigm of ANNs involves developing mathe-
matical models to extract important features from the training dataset
[22].

After training process, a validating process should be performed to
estimate the ANN performance on testing datasets. The ANN which
yields good validation performance is an accurate model [22].

3. Experimental

Fifty nine Brazilian soil samples, provided by AIC (Agronomic
Institute of Campinas), with reference values for Cu labile concentra-
tion, were used as calibration set. Each reference soil sample presents
different composition with regard to sand, clay and silt amounts in
their matrices. The use of different soil matrices for calibration was
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Fig. 1. A typical artificial neural network setup.
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