Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework

Yiqin Xie, Chunhui Deng*

Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China

ARTICLE INFO

Article history: Received 7 April 2016 Received in revised form 26 May 2016 Accepted 29 May 2016 Available online 1 June 2016

Keywords: MOF Phosphopeptide enrichment Lanthanide Mass spectrometry

ABSTRACT

Highly efficient enrichment of phosphopeptides from complex biological samples is crucial prior to mass spectrometry analysis due to the low abundance and ion suppression effects. In this study, a facile route was designed for preparation of a magnetic erbium(Er)-based metal-organic framework (denoted as Fe₃O₄@PDA@Er(btc)), which was synthesized with 1,3,5-benzenetricarboxylic acid(H₃btc) as ligand and grafted on the polydopamine (PDA) – coated Fe₃O₄. The as-prepared material exhibited ultra-high sensitivity (detection limit of 20 amol/µL) and selectivity at a low mass ratio of β-Casein/BSA (1:500). Moreover, it was also investigated for enrichment of phosphopeptides from human serum, which provided a promising technique for highly efficient enrichment of low-abundance phosphorylated peptides in the practical application.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Protein phosphorylation, one of the most important posttranslational modifications (PTMs), plays a key role in biological processes including cell cycle, [1] cell function, [2] signal transduction [3] and other interactions. Mass spectrometry (MS) is the most common tool for phosphoproteome research in terms of high-throughput experimental platform development [4] and the contribution of MS to phosphoproteomics was reviewed in 2011 [5] Identification of phosphopeptides remains quite difficult because of the low abundance and low ionization efficiency. Therefore, enrichment of phosphopeptides from complex bio-samples is quite crucial for MS analysis [5,6].

Various strategies were applied for phosphopeptides enrichment such as immobilized metal affinity chromatography (IMAC), [7,8] metal oxide affinity chromatography (MOAC), [9,10] immunoprecipitation, [11] chemical modifications [12] and ion exchange chromatography [13]. Among all these strategies, IMAC and MOAC are the most widely used for efficient enrichment of phosphopeptides nowadays. IMAC relies on the attraction of metal cations (Ti^{4+} , Al^{3+} , Fe^{3+}) and negatively charged phosphate groups, [14] while MOAC relies on the affinity of oxygen in the phosphate groups and the surface of metal oxide, including TiO₂, [15,16] ZrO₂, [17,18] etc. TiO₂-metal oxide has been demonstrated to be potential in phosphopeptide enrichment thanks to its high

* Corresponding author. E-mail address: chdeng@fudan.edu.cn (C. Deng).

http://dx.doi.org/10.1016/j.talanta.2016.05.075 0039-9140/© 2016 Elsevier B.V. All rights reserved. salt tolerance. Ti⁴⁺ and Zr³⁺ have been reported to be a strong binding between metal ions and phosphopeptides. However, strong binding also brought some dismerits, like co-enriching some large-molecule proteins. Limited surface area and poor hydrophilicity from IMAC and MOAC also restrain the performance of capturing phosphopeptides. As IMAC or MOAC-based methods still suffer from shortcomings such as troublesome preparation techniques, sample loss due to the centrifugation, nonspecific adsorption, [19] it is in urgent need to develop innovative strategies and novel materials for phosphoproteome research.

Recently, great efforts have been devoted to the synthesis of metal-organic frameworks (MOFs), which are consisted of metal ions linked together by organic ligands [20]. MOFs, a new class of porous materials, have been employed in gas adsorption, separation, [21] catalysis, [22] and so on, owing to its adjustable pore structure, high surface area and in-pore functionality and outersurface modification [23]. To date, some magnetic MOF matreials have been applied in phosphopeptide enrichment but with tedious and time-consuming synthesis (including several cycles in selfassembly) [24,25] Furthermore, the element chosen for MOFs to enrich phosphopeptides was limited by Fe-MOF [24,25] and Zr-MOF, [26,27] while Er-MOF was almost not applied in phosphoproteomics research. Who once applied Er-MOF in phosphopeptide enrichment, but gained relatively poor enrichment effect [28]. Herein, a facile route was proposed for preparation of a magnetic metal-organic framework by modifying erbium-MOF on the polydopamine (PDA)-coated magnetic microspheres (denoted as Fe₃O₄@PDA@Er(btc)) showing strong magnetic responsiveness, excellent hydrophilicity, and high surface area and anticipating a

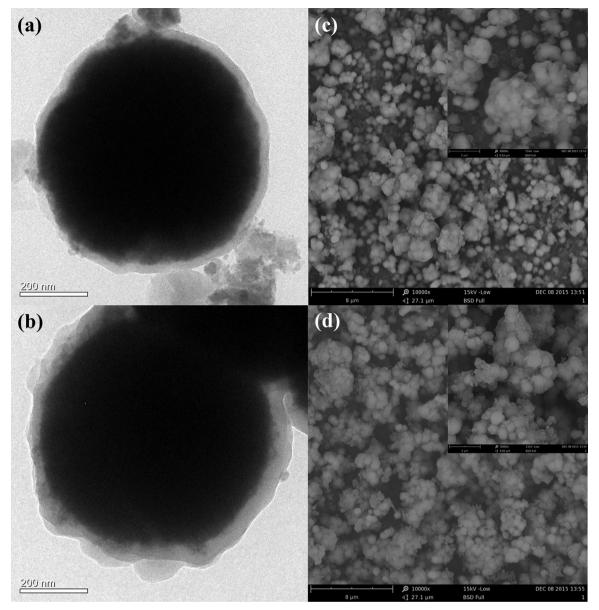


Fig. 1. TEM images of (a) Fe₃O₄@PDA and (b) Fe₃O₄@PDA@Er(btc); SEM images of (c) Fe₃O₄@PDA and (d) Fe₃O₄@PDA@Er(btc).

great performance in phosphopeptides enrichment with ultrahigh sensitivity and selectivity.

2. Experimental

2.1. Synthesis of Fe₃O₄@PDA@Er(btc)

The synthetic route for Fe₃O₄@PDA@Er(btc) is presented in Scheme S1 in SI. At first, the Fe₃O₄ magnetic microspheres were synthesized via a widespread solvo-thermal reaction [29]. Then, the magnetic core was coated with a PDA layer through the spontaneous polymerization of dopamine in alkaline solution. A PDA layer could enhance the biological amphipathy and Er^{3+} could be much more easily deposited on the surface with the help the hydroxyl of PDA. The obtained Fe₃O₄@PDA (50 mg) was dispersed in 40 mL ethanol of MOF precursors, containing 80 mg $Er(NO_3)_3 \cdot 5H_2O$ and 84 mg H₃btc at 70 °C for 2 h. The product was collected by magnetic separation and washed with ethanol and then kept in the vacuum oven.

2.2. Characterization and measurements

Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Magnetization measurement, Fourier transform infrared spectra (FT-IR), Raman spectra (Raman), powder X-ray diffraction patterns (XRD) and Zeta potential measurements were measured and detailed information were illustrated in Supporting Information.

2.3. Sample preparation

BSA and β -Casein were respectively dissolved in NH₄HCO₃ buffer (25 mM, pH 8.3) and incubated with trypsin (trypsin: β -Casein is 1:50, w/w) at 37 °C for 16 h. Human serum was diluted 10 fold with loading buffer.

2.4. Enrichment of phosphopeptides from β -Casein digests

The workflow of phosphopeptides is illustrated in Scheme S2 in SI. 200 μ g of Fe₃O₄@PDA@Er(btc) was added into 200 μ L peptide

Download English Version:

https://daneshyari.com/en/article/1241738

Download Persian Version:

https://daneshyari.com/article/1241738

Daneshyari.com