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a b s t r a c t

Different measures of selectivity are in use for single channel and multichannel linear analytical mea-
surements, respectively. It is important to understand that these two measures express related but still
distinctly different features of the respective measurements. These relationships are clarified by intro-
ducing new arguments. The most widely used selectivity measure of multichannel linear methods
(which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a
determination where all bias from interferents is computationally eliminated using pure component
spectra. The conventional selectivity measure of single channel linear measurements, on the other hand,
helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods
expert knowledge about the samples is used to limit the possible range of interferent concentrations. The
same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determina-
tions also in “classical” multichannel measurements if those are intractable due to perfect collinearity or
to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some
bias in the results and therefore the concept of single channel selectivity can be extended in a natural
way to multichannel measurements. This extended definition and the resulting selectivity measure can
also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR),
principal component regression (PCR) and ridge regression (RR).

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Selectivity is a central concept in analytical chemistry [1].
Without selective methods analytical measurement of individual
components' concentrations in mixtures would not be possible. A
general definition of selectivity and particularly its quantification are
quite difficult [2,3]. However, if a measured signal depends linearly
on the concentrations of some components in the sample (e.g., in
absorption spectrophotometry), acceptable measures of selectivity
can be obtained. There have been, indeed, two main trends for
defining the selectivity of linear methods. In measurements on a
single channel (e.g., on a single wavelength or with a single sensor)
selectivity is commonly defined [3–5] as the ratio of analyte sensi-
tivity to interferent sensitivity. In multichannel (multivariate) ana-
lysis other selectivity measures have been proposed [6–8], and the

one introduced by Lorber [7] (to be explained later in this paper)
appears to be the most accepted.

It will be shown in this paper that this widely accepted multi-
channel selectivity is not a simple extension of the single channel
selectivity concept. The two selectivities reflect two different
approaches of analytical chemists to solve the same problem, the
determination of an analyte concentration in samples where inter-
ferents may be present. It will also be shown that a direct extension
of the single channel approach to multichannel measurements is
possible. This may result in better analytical results and easier
methods and one can also define and measure selectivity in accor-
dance with the single channel methods.

This paper is part of an effort to clarify the concept of analytical
selectivity in systems both with linear and nonlinear responses
and with one or more measurement channels [2,3,9].

Scalar quantities will be denoted in this paper by lowercase let-
ters, vectors as lowercase bold face letters, matrices as uppercase
letters. Row vectors and column vectors will not be differentiated as
this will be clear from the context. Vector multiplication means
always the scalar product. Vector norms (Euclidean) are denoted by
double vertical lines.
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2. Definitions of analytical selectivity in linear methods

2.1. Single channel linear methods

In many analytical methods the measured signal(s) depend
linearly on the analyte concentration and also on the concentra-
tions of some interferents potentially present in the investigated
samples. Such techniques are, for example, absorption spectro-
metries, where the Lambert–Beer law has wide validity:

A s c s c s c (1)A A B B C C= + + + … + ελ

Here Aλ is the measured absorbance signal at wavelength λ, the c–s
are concentrations, the s–s are sensitivities (typically all non-nega-
tive, and this non-negativity will be assumed throughout this paper)
and the lower case indices denote different compounds: A is the
analyte, B, C, and possibly others are interferents; ε is the random
error of the absorbance measurement (not the molar absorbance
coefficient). Let us assume that the sensitivities sA, sB, etc., are known
accurately and precisely from a preceding calibration and the linear
model is also accurate. If the absorbance is measured on a single
wavelength (or more generally a single measurement channel is
used) then the concentration of the analyte, cA, cannot be deter-
mined from the measured absorbance alone, because the interferent
concentrations cB, cC, etc., are also unknown and only a single
equation is available. But we may have additional information which
limits the possible range of cA. A natural constraint is that all con-
centrations are non-negative. In many linear methods also the sen-
sitivities are non-negative (see above). These two conditions limit
the possible range of cA between the detection limit and Aλ/sA
(neglecting the random error at this upper limit). This range is still
too wide and further information is needed to estimate cA more
sharply, i.e., with less error. Before we show how, let us calculate the
relative error of cA in a single channel measurement from Eq. (1). For
simplicity we consider only one interferent, B.
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The first term on the right hand side is the interference effect or
relative bias. The bias itself is sBcB/sA. Both depend on the ratio of
the respective sensitivities, but also on the concentration(s). The
ratio of sensitivities is then a characteristic quantity. Its reciprocal,
sA/sB, may be considered the selectivity measure of the method.
The higher this selectivity measure is, the less interference (rela-
tive bias) will be observed at a given ratio of the concentrations.
Since in analytical chemistry the (relative) error of the analyte
concentration estimate is very important, this definition of selec-
tivity makes sense. Indeed this is the traditional definition of
single channel selectivity [4,5].

The selectivity, sA/sB, is the ratio of two sensitivities. As the
sensitivities express signal changes per unit concentration change,
their ratio shows the necessary change in cB to bias cA by one
concentration unit. For the same reason the reciprocal of the
selectivity shows the (change of) bias in cA caused by unit change in
cB. This formulation will be extended later in this paper to multi-
channel methods.

Two things need to be noted here. First, the selectivity, sA/sB is
used in the estimation of the bias, not the random error. This will be
very important later in the discussion of multichannel selectivity.
Second, sA/sB is not sufficient alone to estimate the relative bias. The
concentration ratio, cB/cA is also needed. Although the individual
concentrations cA and cB, respectively, are unknown, the analyst may
have some information about their ratio. For example the analyst
may know from experience with the samples at hand that the ratio
cB/cA is less than 0.01 in all samples, i.e., cB/cAo0.01. This inequality
is a very useful constraint. For example if sA/sB¼ 2, then the bias in

the determination of the analyte concentration is found from Eq. (2)
to be less than 0.5�0.01¼0.005, i.e. 0.5%.

Generalizing what has been said above, Eq. (1) is an under-
determined linear “equation system” consisting of a single equation
with two unknown concentrations. To obtain a sufficiently close
estimate of the analyte concentration, further information is needed
about the concentration variables. Such information may be further
equations, which are derived from additional measurements, like
absorbance readings at multiple wavelengths. This is the case in
multichannel measurements, where the goal may be to completely
eliminate the bias due to interferents. This will be discussed later. But
the analyst may not want to eliminate the effect of interferents
completely, since she needs only to keep the total uncertainty of cA
below certain, predetermined limit [10]. Therefore she may be satisfied
to know that the first term on the right hand side of Eq. (2) is below
a certain limit. For a method with given selectivity this means she
needs to make sure that the concentration ratio cB/cA is less than a
certain limit. Mathematically this is a constraint on the two variables
in the form of an inequality:

c
c

u
(3)
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where ulim is an upper limit. The analyst may know from experience
with earlier samples that this limit is never exceeded; she may even
ascertain this in new samples by some semiquantitative tests.
Alternatively it may be enough to know or to prove that cB is less
than a certain limit, if one knows simultaneously that cA is higher
than a certain minimum in every sample. Occasionally the analyst
may not know these relationships a priori, but she may perform a
sample pretreatment operation which leads to the required relation.
It is also possible that a method developer includes in the description
of the method that some concentrations, or concentration ratios,
must not exceed a certain value for the method to be sufficiently
accurate. Such considerations are very common in some areas of
analytical chemistry, e.g., in ion selective electrode potentiometry.
But less explicitly than in potentiometry, they are used in essentially
all single channel analytical measurements, because analytical che-
mists do not bother with interferents which are extremely unlikely
to be present in samples in appreciable concentrations compared to
the analyte. Interferents with very low sensitivity values can also be
mostly disregarded because the bias caused by them is well within
the tolerance limits. This sort of neglecting minor interferences does
not work in some multichannel measurement methods, where the
mere assumption that an interferent may be present, can be the
cause of very large analytical errors. One goal of this paper is to show
how to avoid this situation.

2.2. Selectivity concepts for multichannel linear methods

Some decades ago it became feasible to make quickly and at low
cost multichannel analytical measurements, e.g., in the form of full
spectra or of sensor array readings. In many instances this had made
possible to obtain fully determined or even overdetermined equation
systems of the kind of Eq. (1). This means that, if the determinant of
the equation system is not zero, and if the pure component spectra
are all available, then all concentrations in the equation system can
be determined without bias caused by other components in the
equations. (Other sources of bias, like unmodeled interferents,
imprecise calibration, unmodeled nonlinearities, etc. are not being
considered here). Such measurements are therefore totally selective
(“specific”) for the analyte (and also for the interferents). It was
therefore thought that the necessity for using selectivity, as a mea-
sure of bias caused by interferents, became superfluous with mul-
tichannel measurements. There were, however, other, new problems
discovered, which were attributable to the interferences. Therefore
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