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a b s t r a c t

Some rational functions of the Padé type, y¼y(x; n,m), were applied to the calibration curve method
(CCM), and compared with a parabolic function. The functions were tested on the results obtained from
calibration of ion-selective electrodes: NH4-ISE, Ca-ISE, and F-ISE. A validity of the functions y¼y(x; 2,1),
y¼y(x; 1,1), and y¼y(x; 2,0) (parabolic) was compared. A uniform, integral criterion of nonlinearity of
calibration curves is suggested. This uniformity is based on normalization of the approximating functions
within the frames of a unit area.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the calibration curve method (CCM), commonly considered
as the preliminary step in different methods of chemical analysis,
the linear functions are usually applied. The degree of linearity of
such lines is expressed by the coefficient of determination R2

(squared linear correlation coefficient, R) value [1]. When referred
to nonlinear relationships, except the nonlinear correlation coeffi-
cient [2], there are no valuable manners of such an evaluation; it
particularly refers to curvilinear relationships approximated by
rational functions of the Padé type [3–5], expressed as the ratio of
two polynomial functions Pn(x) and Qm(x), of nth and mth degree,
respectively [6]

y¼ yðx;n;mÞ ¼ PnðxÞ
QmðxÞ

ð1Þ

The Padé approximants still attract attention of physicists and
mathematicians; an extensive list of the related papers is provided
in [7]. It was found that various experimental data can be elegantly
modeled with use of rational functions [8–14].

The functions of the Padé type appeared to be a valuable tool
for modeling the titration curves referred to complex acid–base
systems; see [15,16] and other references cited therein, or to
a complex redox system [17]. There were shown that rational
functions provide much better approximation than polynomial
functions with the same number of parameters involved,
expressed in terms of natural or converted variables [18–22]. This
method is computationally efficient and manifests a high robust-
ness [6,23]. The Padé approximants are now employed in diverse
contexts, indicated in [24].

This paper refers to the normalization of calibration curves
applied for determination of some ions: NH4

þ , Ca2þ and F� , with
use of ion-selective electrodes (ISEs), within defined ranges of
concentrations of particular ions. Nonlinearity of the curves within
these ranges is measured according to an integral criterion of
nonlinearity, with use of rational and parabolic functions. Applic-
ability of particular functions for modeling purposes has also been
taken into account.

2. Some rational functions and normalization principle

Let us refer first to the rational function (A-model)

y¼ a0þa1 Uxþa2 Ux2

1þa3 Ux
ð2Þ
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i.e., n¼2 and m¼1 in Eq. (1). On this basis, one can also
consider some simplified forms of Eq. (2), referred to the options:
a2¼0 (B-model), or a3¼0 (C-model). In particular, for the C-model
we get the parabolic function

y¼ a0þa1 Uxþa2 Ux2 ð3Þ
where Qm¼Q0¼1. Function (2) and its simplified forms will be
applied for CCM purposes.

Let us take the set of experimental data {(xj, yj) | j¼1,…,N},
where x1ox2o…oxN. Denoting Δx¼xN � x1 and Δy¼yN � y1,
for the monotonic function (yj〈yjþ1 or yj〉yjþ1 at j¼1,…, N�1), we
introduce the variables u and v through the relations:

x¼ x1þu �Δx and y¼ y1þv �Δy ð4Þ
Applying them to function (2), after a lengthy but straightforward
algebra, we get the relation for the A-model (see Appendix A)

v¼ vðuÞ ¼ αUuþβUu2

1þγ Uu
ð5Þ

where

α¼ ða1þ2a2 Ux1�a3y1Þ
1þa3x1

U
Δx
Δy

ð6Þ

β¼ a2
1þa3x1

U
ðΔxÞ2
Δy

ð7Þ

γ ¼ a3
1þa3x1

UΔx ð8Þ

Note that v(0)¼0. At (u, v)¼(1, 1), we have the relation

αþβ¼ 1þγ; i:e: γ ¼ αþβ – 1 ð9Þ
The parameters a0, …, a3 in Eqs. (6)–(8) are obtained according to
the least squares method (LSM) applied to the regression equation

yj ¼ a0þa1 Uxjþa2 Uxj
2�a3 Uxj Uyjþεj ð10Þ

derived from Eq. (2). Note that the formulas (6)–(8) do not involve
a0, and the value s¼Δy/Δx, inherent in α and β (Eqs. (6) and (7)),
is the mean slope of the curve y¼y(x) (Eq. (2)) within the 〈x1, xN〉
interval. For the models B (a2¼0), C (a3¼0), we have (B) β¼0, (C)
γ¼0 respectively. In these cases, Eq. (5) simplifies into the
relations [25,26]:

B v¼ αUu
1þγ Uu

ðwhere γ ¼ α–1Þ ð11Þ

ðCÞ v¼ αUuþβUu2 ðwhere β¼ 1–αÞ ð12Þ
The relations, Eq. (5) with Eq. (9), Eq. (11) and Eq. (12), are in close
relevance to the homotopy problem [27,28].

On the basis of formula (5) or its simpler forms, referred to the
models, B and C, any set of experimental points {(xj, yj) ∣ j¼1,…,N}
in the CCM can be presented within the frames of coordinates (u,
v), where u A 〈0, 1〉and v A 〈0, 1 〉; see Fig. 1. In all instances, the
curve v¼v(u) links the points (0, 0) and (1, 1) on the (u, v) plane.
A reference is the linear function y¼a0þa1 � x (a2¼a3¼0 in Eq.
(2)), where we get the straight line

v¼ u ð13Þ
connecting the points (0, 0) and (1, 1) on the (u, v) plane.

In order to use the formulas v¼v(u), applicable for calculations
made according to tables with elementary integrals, one can apply
some transformations of Eqs. (5), (11) and (12); namely, we have
(see Appendix A) for the A-model

v¼ αUuþβUu2

1þγ Uu
¼ β
γ
UuþαUγ�β

γ2
�αUγ�β

γ3
U
d
du

ln uþ1
γ

� �
ð14Þ

Putting β¼0 in Eq. (14) we have

v¼ αUu
1þγ Uu

¼ α
γ
� α
γ2

U
d
du

ln uþ1
γ

� �
ð15Þ

for the B-model. Eq. (12), referred to the C-model, needs none
preparatory transformation.

3. The integral criterion of nonlinearity

The area between the lines, v¼v(u) and v¼u, plotted in
normalized coordinates (u, v), is the measure of nonlinearity of
any monotonic relationship obtained on the basis of experimental
points (xj, yj) ∣ j¼1,…,N}; see Fig. 1. This area is expressed as
follows:

Ω¼
Z 1

0
v�uj jUdu¼

1
2�

R 1
0 vUdu for u Z vR 1

0 vUdu�1
2 for v Z u

8<
: ð16Þ

Then from Eqs. (12), (14) and (15) we get

θA ¼
Z 1

0
vUdu¼ β

2γ
þðα�1ÞðαþβÞ

γ2
U 1�1

γ
U ln αþβ

�� ��� �

for the A�model; γ ¼ αþβ – 1 ð17Þ

θB ¼
Z 1

0
vUdu¼ α

α� 1
� α
ðα � 1Þ2

U ln αj j for the B � model ð18Þ

θC ¼
Z 1

0
vUdu¼ αþ2

6
for the C�model ð19Þ

respectively. Then for uZv we get

ΩA ¼ 1
2�θA; ΩB ¼ 1

2�θB andΩC ¼ 1
2�θC

ðsee Eq: ð16ÞÞ: ð20Þ

4. Experimental part

4.1. Apparatus and reagents

All the calibration experiments were made according to poten-
tiometric titration mode, with use of ion-selective (1o) ammonium
(NH4-ISE), (2o) calcium (Ca-ISE), and (3o) fluoride (F-ISE) electro-
des, purchased in Eutech Instruments. Titrand D and titrant T were
freshly prepared in flasks (25 mL) where stock solutions of the
corresponding reagents, NH4Cl, CaCl2, NaF, KCl, CH3COOH, and
CH3COONa, each of pa purity, were introduced and filled up to the
mark with water. Doubly distilled water, with conductivity
approximately 0.18 mS/cm, was used for preparation of the solu-
tions and dilutions. In 2o, concentration of KCl (0.1 mol/L) was the
same in D and T. In 3o, D and T contained 10 mL of acetate buffer

Nomenclature

CCM Calibration curve method
D Titrand

ISE Ion-selective electrode
LSM Least squares method
T Titrant
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