Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Proposal of a procedure for the analysis of atmospheric polycyclic aromatic hydrocarbons in mosses

Estefanía Concha-Graña, María Piñeiro-Iglesias, Soledad Muniategui-Lorenzo*, Purificación López-Mahía, Darío Prada-Rodríguez

Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain

ARTICLE INFO

Article history: Received 1 September 2014 Received in revised form 4 November 2014 Accepted 8 November 2014 Available online 15 November 2014

Keywords: Moss PAHs Pseudoscleropodium purum Sphagnum sp Hypnum cupresiforme MAE PTV-GC-MS/MS

1. Introduction

Monitoring of polycyclic aromatic hydrocarbons (PAHs) in ambient air is of great interest due to the implications on human health of the presence of those compounds in the atmosphere. The specialized cancer agency of the World Health Organization, the International Agency for Research on Cancer (IARC), classified outdoor air pollution as carcinogenic to humans (Group 1) [1]. PAHs levels can vary considerably in space, and thus it is of great interest the use of sampling tools that are able to assess spatial deposition of PAHs at a local scale. The use of moss as passive accumulators for organic compounds has gained popularity in the last decades because of their usefulness for the large scale monitoring [2]. Directive 2004/107/EC allows the use of alternative sampling methods which it can demonstrate give results equivalent to the reference method to assess spatial deposition of PAHs [3]. The morphological and physiological characteristics of mosses make them excellent tools for biomonitoring [4,5]. The growing interest by using moss as monitors for PAHs sampling makes necessary the development of efficient analytical procedures for the analysis of this kind of samples.

* Corresponding author. Tel.: +34 981 167000; fax: +34 981167065. *E-mail address:* smuniat@udc.es (S. Muniategui-Lorenzo).

ABSTRACT

A useful analytical procedure for the analysis of 19 polycyclic aromatic hydrocarbons (PAHs) in moss samples using microwave assisted extraction and programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC–MS/MS) determination is proposed. The state of art in PAHs analysis in mosses was reviewed. All the steps of the analysis were optimized regarding not only to the analytical parameters, but also the cost, the total time of analysis and the labour. The method was validated for one moss species used as moss monitor in ambient air, obtaining high recoveries (between 83–108%), low quantitation limits (lower than 2 ng g⁻¹), good intermediate precision (relative standard deviation lower than 10%), uncertainties lower than 20%. Finally, the method was checked for other species, demonstrating its suitability for the analysis of different moss species. For this reason the proposed method can be helpful in air biomonitoring studies.

© 2014 Elsevier B.V. All rights reserved.

A review of the state of the art in the analysis of PAH in moss can be seen in Table 1. The most common technique for the determination of the PAHs is gas chromatography coupled to mass spectrometry. The most common technique used in the extraction of PAHs from mosses is the Soxhlet extraction. However, it demands large volumes of highly purified organic solvents and long extraction times are need. For these reasons it is interesting the use of alternative techniques that allow a more efficient extraction of the analytes from the matrix by improving the contact of the target compounds with the extraction solvent. By this way a reduction of both the extraction time and the organic solvent consumption is achieved, and also an increase in sample throughput.

In the last years other authors have introduced accelerated solvent extraction (ASE) [4,6–9] or dynamic sonication-assisted solvent extraction (DSASE) [10] as alternative extraction procedures for the analysis of PAHs in moss. Microwave assisted extraction (MAE) has been widely used for the analysis of inorganic elements in moss, but, as far as we know, not for organic compounds.

MAE is more efficient and faster than the traditional liquid-solid procedures, allows the simultaneous extraction of several samples (between 6–12) and is less expensive than ASE. Moreover, the volume of solvent used is about 10 times lower than the required in Soxhlet extraction and also below the required in sonication [11]. The use of MAE for PAHs analysis is very frequent in matrices such as air particulate [12–18], soils [19–21] and sediments [22–26]. Few papers

Review of the state of art in PAH analysis in moss. ACN:acetonitrile, ASE: accelerated solvent extraction, NM: not mentioned.

Compounds	Sample	Extraction	Cean-up	Determ.	Recovery	Sensitivity	Uncertainty/RSD	Ref.
16 PAHs EPA 13 PAHs	Fontinalis antipyretica Dicranum scoparium Hypnum cupressiforme Thamnobryum alopecurum Thuidium tamariscinum	Soxhlet 200 ml ACN24h. Soxtec (moss+sodium sulphate+Florisil)	Florisil . Elution 30 ml CAN Florisil cartridges 1 g	HPLC-FLD HPLC-FLD	60–107% 25–79%	NM LOQ 3–52 pg instrumental	RSD:20-24% RSD < 20%	[35] [34]
16 PAHs	Hylocomium splendens Pleurozium scheberi	ASE, DCM	-	GC-MS	74–96%	LOQ 1-5 ng g^{-1}	U: 10–25%	[6]
17 PAHs	Hylocomium splendens Pleurozium scheberi	Soxhlet, DCM.	-	GC-MS	74–96%	NM	U: 10–25%	[48]
16 PAHs	Hypnum cupressiforme	Sonication 5 g +100 ml H:A (1:1), twice	Silica column	HPLC	65–85%	NM	RSD: 10-15 %	[40]
13 PAHs	Hypnum cupressiforme Isothecium myosuroides	ASE, H 80 °C, 5 min, 2 cycles	Florisil cartridge 1 g, 8 ml H/ DCM (60:40)	HPLC	68–70%	3–52 pg instrumental	RSD: 1–22%	[4,7,49]
11 PAHs	Fontinalis antipyretica	Soxhlet 200 ml DCM 16 h	Florisil cartridges	HPLC-FLD	65-78%	NM	NM	[36]
15 PAHs	Pleurozium scheberi	Soxhlet 200 ml DCM 16 h	Alumina column, 10 ml DCM	GC-MS	NM	NM	NM	[38]
18 PAHs	Tortula muralis	Sonication 5 g 30 min, 100 mL H	No clean up	GC-MS	Average 70%	NM	NM	[50]
16 PAH	Hypnum plumaeformae	ASE 5 g, 1500 psi, 100 °C, 2cycles, 5 min DCM:A (1:1)	5 g alumina + 5 g florisil + 10 g silica, 60 ml DCM GPC: 10 g Biobeads S-X3, 80 ml H:DCM (1:1)	GC-MS	49–99%	MDL:3.3-7.8 ng g ⁻¹	RSD:5-8%	[8]
9 PAH	Hypnum cupressiforme	Microsoxhlet 3 h immersed in H, and 2 h reflux	_	HPLC-FLD	81–98%	NM	RSD:5.5-24%	[46]
PAHs and OCPs	Pleurozium scheberi	ASE 40 °C+120 °C, 3*10 min, H	15 g florisil 160 ml H:DCM (1:1), first 60 ml passed through 3.5 g active florisil 60 ml H:DCM (1:1)	GC-MS	25–78%	NM	NM	[9]
16 PAHs EPA	Hylocomium splendens Scleropodium purum Hypnum cupressiforme Abietinella abietina	Soxhlet 5 g, H	PAH soil cartridges 1.5 g. DCM:petroleum ether(1:4)	GC-MS	47–114%	NM	RSD:10-19%	[51,52]
16 PAHs	Hypnum cupressiforme	Soxhlet , 8 h DCM. Sulphuric clean up	Florisil column	GC-MS	80-98%	$0.3-1 \text{ ng g}^{-1}$	RSD: 3–8%	[37]
16 PAHs	Leptodon smithii	Sonication, 3 g, 3*100 ml DCM:A (1:1)	-	GC-MS	NM	LOD 1–3 ng ml $^{-1}$	NM	[53]
15PAHs 8nPAHs	Hypnum cupressiforme	DSASE, 0,2 g, H, 2 ml	0.05 g Florisil+0.5 g NH2- SPE 2 ml H:DCM (65:35)	APGC-Q-TOF-MS	79–98%	instrumental LOD: $7-350 \text{ ng g}^{-1}$	RSD 1.8–17%	[10]
PAHs 19 PAHs	Hypnum cupressiforme Pseudoscleropodium purum	Soxhlet 5 g, 200 ml DCM. MAE, 20 ml H: A (90:10)	Silica column Dual layer Florisil-Silica (2 q + 2 q)	HPLC-UV GC–MS/MS	NM 83-108%	NM MQL: 0.1–1.7 ng	NM U 8–22%	[39] This work
	Sphagnum sp Hypnum cupresiforme		5 ml H+15 ml DCM:H (20:80)		56–108% 62–112%	5		

Download English Version:

https://daneshyari.com/en/article/1244074

Download Persian Version:

https://daneshyari.com/article/1244074

Daneshyari.com