Trends in Analytical chemistry 50 (2013) 22-32

Contents lists available at SciVerse ScienceDirect

Trends in Analytical chemistry

journal homepage: www.elsevier.com/locate/trac

Review
Independent Components Analysis with the JADE algorithm

D.N. Rutledge *, D. Jouan-Rimbaud Bouveresse

INRA, UMR 1145 Ingénierie Procédés Aliments, F-75005 Paris, France
AgroParisTech, UMR 1145 Ingénierie Procédés Aliments, F-75005 Paris, France

ARTICLE INFO ABSTRACT

Keywords: ) Independent Components Analysis (ICA) is a relatively recent method, with an increasing number of
Chemometrics applications in chemometrics. Of the many algorithms available to compute ICA parameters, the Joint
f:dr:gli)ijggzi set Approximate Diagonalization of Eigenmatrices (JADE) algorithm is presented here in detail. Three

examples are used to illustrate its performance, and highlight the differences between ICA results and
Interpretable signal those of other methods, such as Principal Components Analysis. A comparison with Parallel Factor Anal-
Joint Approximate Diagonalization of ysis (PARAFAC) is also presented in the case of a three-way data set to show that ICA applied on an
Eigenmatrices (JADE) unfolded high-order array can give results comparable with those of PARAFAC.
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1. Introduction

Independent Components Analysis (ICA) is becoming a method
of choice in different scientific domains [1], including chemomet-
rics. This method was first developed in the 1990s [2,3] in the field
of signal processing in telecommunications [4,5], and its use has
extended to all domains where the notion of “signal” is present;
for example in the medical field, the analysis of electro-encephalo-
grams [6], statistical process control [7], analytical chemistry [8],
and metabolomics [9]. Several developments of ICA were recently
reported [10]. In chemistry, it is frequent to analyze samples with
spectroscopic techniques, such as infrared spectroscopy, fluores-
cence spectroscopy, and nuclear magnetic resonance. The analysis
of such multi-dimensional and (highly-)correlated data sets relies
on chemometric techniques [11].

So far, Principal Components Analysis (PCA) has been widely
used in this respect. However, the interpretation of PCA loadings
vectors is often not so straightforward, as these vectors may repre-
sent combinations of different phenomena described by the data.
On the other hand, each ICA “loadings vector” (source signal) de-
scribes one independent phenomenon. This difference is due to
the intrinsic properties of the two methods: while PCA is based
on determining the orthogonal directions of maximum dispersion
of the samples in the multidimensional space defined by the vari-
ables, the aim of ICA is to recover the pure source signals mixed to-
gether in the observed signals.

Several different algorithms to calculate Independent Compo-
nents (ICs) are available, among which one can cite FastICA [12],
InfoMax [13], and the Joint Approximate Diagonalization of
Eigenmatrices (JADE) [14]. We have applied JADE successfully
to several types of data (3D-fluorescence data, mid-infrared
spectra and mass spectra). The major advantage of JADE over
other algorithms is that it is based on matrix computation,
involving matrix diagonalization, as is done in other “standard”
chemometric methods, such as PCA or Factorial Discriminant
Analysis (FDA). Other algorithms (e.g., FastICA) rely on an opti-
mization procedure, and hence may yield variable results
depending on the starting point and on the optimization path
followed by the search algorithm. Comparisons of ICA algorithms
have been published [15-18], but the conclusions differ, depend-
ing on the data analyzed and on the criteria used to evaluate the
results.

The goal of this article is to present the concepts of ICA, and its
advantages and disadvantages in chemometrics. For the reasons
above, a thorough comparison of the results obtained from differ-
ent ICA algorithms is not given in this article, which focuses on the
JADE algorithm.

2. Theory
2.1. PCA and ICA: two different ways of approaching multivariate data

The mathematical methods used in multivariate data analysis
are based on matrix algebra. The analyzed data are organized into
a data matrix, X (r x ¢), the r samples corresponding to the rows of
X, while the c variables are the columns of X. When signals are ana-
lyzed, it is usual to represent them as the rows of the data matrix,
while the columns represent the variables for which the intensities
have been measured.

In PCA, the data matrix X is seen as a collection of objects (the
samples, in the rows of X) in a multidimensional space defined
by the original variables. Samples with similar values for the vari-
ables will be located close together in that space, whereas samples
with very different values will be far apart. If the data matrix
contains only Gaussian noise, the objects will be distributed

spherically in the space of the variables. If, on the other hand, a
non-spherical distribution is observed, it may be assumed there
is information in the data.

The basic assumption of PCA is that the directions in which the
samples are most dispersed are the most interesting and therefore
the corresponding vectors are the most informative combinations
of the original variables. Here, variability is assumed to be directly
related to information.

PCA calculates new latent variables, called Principal Components
(PCs), to describe these directions of maximum dispersion of the
objects. The first PC is the vector describing the direction of maxi-
mum sample dispersion. Each following PC describes the maximal
remaining variability, with the additional constraint that it must be
orthogonal to all the earlier PCs to avoid it containing any of the
information already extracted from the data matrix. In other
words, each PC extracts as much remaining variance from the data
as possible. The calculated PCs are weighted sums of the original
variables, the weights being elements of a so-called loadings vector.
Inspection of these loadings vectors may help determine which ori-
ginal variables contribute most to this PC direction. However, PCs
being mathematical constructs describing the directions of great-
est dispersion of the samples, there is no reason for the loadings
vectors to correspond to underlying signals in the data set. Most
of the time, PCs are combinations of pure source signals, and do
not describe physical reality. For this reason their interpretation
can be fraught with danger.

2.2. Independent Components Analysis

ICA is a method of Blind Source Separation (BSS) [1]. The
assumption underlying ICA is that each row of the data matrix is
a weighted sum of pure source signals, the weights being propor-
tional to the contribution of the corresponding pure signals to that
particular mixture. The original source signals and their propor-
tions in the analyzed mixtures, are unknown. In ICA, X is not seen
as a collection of points in a multidimensional space, but rather as
a collection of signals (in the rows) with a certain number of com-
mon sources. ICA aims to extract these pure sources, underlying
the observed signals, as well as their concentration in each mix-
ture. For example, in chemistry, a signal can correspond to the
spectrum of a mixture of several pure compounds: ICA may be
used to find the pure spectra of the compounds and the concentra-
tion of each compound in each mixture.

Let us suppose that three “mixture-signals”, X;, X, and X3, are
linear combinations of two pure signals, s; and s,. These linear
mixtures can be written as:

X;i =4ad11 $1+3a12 82 (13)
Xy =4dz; $S1+4dxn S (1b)
X3 =adz1 $1+4A3 S (]C)

In matrix notation:

X=AS (2a)
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