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A B S T R A C T

Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpre-
tation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure
identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in
metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to
the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottle-
neck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn)
trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, gen-
erate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the
dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over
the past 10 years as a tool for metabolite identification, including algorithms, software and databases
used to build and to implement fragmentation trees and mass spectral annotations.
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1. Introduction

Mass spectrometry (MS) is the dominant analytical technique
in metabolomics. The elemental composition and structural infor-
mation of a molecule can be readily determined by information
provided by MS, such as accurate mass-to-charge ratio (m/z), isotope
abundance [1] and fragmentation patterns [2]. The Metabolomics
Standards Initiative (MSI) categorizes structure elucidation into four
different levels: identification, annotation, characterization and

classification [3,4]. These levels establish a thorough standard for
the validation of metabolites that are identified across non-
targeted metabolomic studies [4]. However, MSI does not provide
a scoring schema to rank identified compounds within the identi-
fied and annotated categories, a caveat that was recently highlighted
by metabolomics investigators [5]. Identification of metabolites refers
to complete identification of the structure, including molecular con-
nections and stereochemical assignments [6]. The identification
process of small molecules in metabolomics is similar to that in other
fields, such as toxicology and proteomics. All fields use accurate mass
analysis, databases or libraries, and mass spectral fragmentations,
such as LC-MS/MS. Some major differences between metabolomics
and proteomics are the presence of multiply-charged ions from
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peptides and the much larger chemical diversity in metabolomics
and exposome analyses [7–9]. Synthesizing reference standards for
confirmation of putative identifications is limited, time consum-
ing, and uneconomical. According to MSI, annotation is putative
compound identification in which the assignment of structures is
highly likely, but not validated through chemical-reference stan-
dards [4]. Structure annotations are often ambiguous due to the
large number of possible isomers, data inaccuracies, limited amounts
of corroborating information, and human errors, including
misclassification of sub-structures. However, annotation can also
be viewed as a strategy to reduce the need for isolation of com-
pounds and de-novo elucidation. The idea is to annotate mass spectra
using the most probable elemental compositions found in public
databases and to add additional orthogonal filters to decrease the
number of structure hits [10].

Computer-assisted structural elucidation (CASE) encompasses
structural dereplication using various analytical techniques from
tandem MS (MS2) and multi-stage MS (MSn) to ultraviolet-visible
(UV), infrared (IR) and nuclear magnetic resonance (NMR) spec-
troscopies. CASE first reduces chemical and spectral properties of
an unknown compound, second generates candidate structures com-
patible with spectral features, and then ranks these candidates
[11–13]. CASE can be used when manual interpretation of data is
impractical and outcomes are unreliable using certain techniques,
such as artificial intelligence, pattern recognition, library search, and
spectral simulation [12,14]. Conversely, structural dereplication is
performed by comparing experimental data to well-known
databases that have standard reference data. Essentially, dereplication
is a process to identify “known unknowns”, which are compounds
that are unknown at the time of detection and with further
investigation are then found to be known compounds [15]. For
example, the National Institute of Standards and Technology (NIST)
database can be used to identify unknown compounds in gas
chromatography-MS (GC-MS) studies [16]. Both structural
dereplication and CASE are not considered de-novo identification
because they rely on database searches with pre-existing known
metabolites or reference standards [17]. Full de-novo identifica-
tion by MS alone can hardly be achieved because isomers are difficult
to distinguish by MS [10]. Mass spectral data inform about elemen-
tal compositions by combining accurate mass and isotopic
information [1]. Collision-induced fragmentation data on the MS2

or MSn levels are used to find structural information from unique
fragmentation patterns to test for the presence and the absence of
functional groups. Interpretation of data in CASE may subse-
quently yield a partial structure or a sub-structure [12] (e.g., by using
graphs that represent MSn fragmentation-tree spectra in a hierar-
chical and data-dependent format). In CASE, rules, such as the
calculation of “Rings plus double-bond equivalents” (RDBE), the ni-
trogen rule and the “even-electron rule”, are applied when
interpreting MS data to identify the formation of fragment ions and
neutral species [18].

The scope of this review is to discuss advancements in tech-
niques used by MS for structure elucidation, specifically the use of
MSn ion trees for small organic molecules with molecular weights
less than 2 kDa.

2. Limitations of tandem mass spectrometry

While collision-induced dissociation (CID) MS/MS today is the
dominant technique for library matching and interpreting frag-
ment patterns to find structural information [6], using MS/MS alone
falls short because product ions found in the MS/MS spectrum may
be derived from intermediary ions instead of being produced di-
rectly from the molecular adduct precursor ion. For example,
although epinine (deoxyepinephrine) conjugates in urine can be de-
termined by MS/MS via precursor ion and neutral loss scans [19],

MS/MS is unable to distinguish between positional isomers of
such catecholamines. In addition, many fragment ions in MS/MS
cannot be explained through fragmentation pathways even when
structures are known [19]. Isomeric flavonoid O-diglycosides may
yield different product-ion ratios in MS/MS fragmentation spectra
[20]. However, such fragment-ion ratios cannot be used to infer
interglycosidic linkages or glycan sequences in structural annota-
tions of unknowns (Fig. 1) even though the authors successfully
constructed a decision tree to differentiate these O-diglycosyl
flavonoids [20].

Similarly, the annotation of positional sub-structures of taxanes
in Taxus could not be achieved by MS/MS alone but only by using
additional analytical methods [21]. Taken together, MS/MS certain-
ly does not provide full structural information to elucidate an
unknown compound completely. MS/MS fails to yield specific po-
sitional information of sub-structures, and many fragment ions
remain unannotated with respect to presence of sub-structures or
detailing fragmentation pathways.

3. Fragmentation trees and mass spectral trees

Trees are data structures defined by graph theory to organize and
store data (e.g., the fragmentation process of an analyte of inter-
est, or MSn spectra generated by an ion-trap mass spectrometer).
A tree is generated by nodes that are linked by edges (Fig. 2). Typ-
ically, the graphs are called fragmentation trees [23], family trees
[24] or identification trees [25], if these trees show the fragmen-
tation pathway of a molecule (Fig. 2A). Fragmentation trees are
generated computationally to predict the fragmentation pathway
of a molecule [23]. An implication of the fragmentation relation-
ship between precursor ions and product ions is made before
acquiring MSn data. Conversely, ion trees or mass spectral trees refer
to the sequential stages and relationships of mass spectral acqui-
sition in MSn processes, representing precursor and product ions
as nodes and neutral losses as edges [26,27] (Fig. 2B). MSn trees can
therefore link ion-fragmentation pathways with (sub)structure re-
lationships in a hierarchical order. An important aspect of MSn trees
is that they reveal both the dependency of precursor/product ion
and product ion/product ion within the same MSn stage or between
different MSn stages. This idea is rooted in the concept that any two
MSn spectra can ideally be treated as virtual MS/MS data: an ion
has no memory. Hence, organizing large MSn libraries will yield a
tremendous expansion of publicly available MS/MS spectra, as long
as each mass spectrum (Fig. 2B) is associated with a defined struc-
ture (Fig. 2A). For both fragmentation and mass spectral trees,
computational methods are required to organize dependencies and
extract specific information.

3.1. MSn ion tree for fragmentation analysis in natural
products research

MSn multistage analysis provides means to link all product ions
to specific precursor ions, hence enabling recursive reconstruc-
tion of fragmentation pathways that link specific sub-structures to
complete molecular structures [28]. Oligosaccharides and sugar
nucleotides were annotated using MS4 ion trees with Mass Fron-
tier 2.0 software [29], but the ion trap used lacked accurate mass
capabilities to associate fragmentation rules unambiguously with
potential fragmentation pathways to identify unknown metabo-
lites detected in plant-phloem samples. Fabre et al. [30] successfully
used MSn to characterize structurally fragment ions and fragmen-
tation mechanisms of flavonoid aglycones in negative-ion mode. MS3

data supported fragmentation mechanisms, helped distinguish
common neutral losses for specific sub-structures, and gave suffi-
cient information to propose reasonable structures for fragments
using both experimental and computational MS. However, for some
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