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A B S T R A C T

Wavelets are a topic of pure mathematics. But over the past decade, they have shown great promise and
are now being adapted for a vast number of signal-processing applications. One of the main advantages
of wavelet analysis is the amount of information that can be extracted from a signal. It has demon-
strated unprecedented success in terms of asymptotic optimality, spatial adaptivity and computational
efficiency. Applications of wavelet transform and wavelet-packet transform in spectral analysis from 2002
to 2013 are reviewed in this article, clearly stating that wavelet methods significantly outperform other
traditional methods of signal processing.
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1. Introduction

Signal processing incorporates all aspects of operations on or anal-
ysis of analog and digitized signals, representing time-varying or
spatially varying physical quantities. In the past decade, this field
has unambiguously become a burgeoning area of research and
design.

Wavelet Transform (WT) is one of the recent techniques for pro-
cessing signals. It is defined as mathematical functions that cut up
data into different frequency components, and then study each com-
ponent with a resolution matched to its scale [1]. Wavelet signal
processing is different from other signal-processing methods because
of the unique properties of wavelets (i.e., wavelets can be symmet-
ric or asymmetric, sharp or smooth, regular or irregular). It can
represent signals sparsely, capture the transient features of signals,
and enable signal analysis at multiple resolutions. Interest in

wavelets and their potential application has resulted in an explo-
sion of papers in life sciences and physical sciences.

The goal of this review is to comment on all outstanding and
state-of-the-art articles of wavelet-based spectral analysis pub-
lished in the period 2002–13 in the context of developments and
challenges yet to be addressed.

2. Theoretical background

Given a time-varying signal, f(t), WT consists of computing co-
efficients, which are inner products of the signal and a family of
wavelets. In other words, WT decomposes a signal into localized
contributions (details and approximations) labeled by a scale and
a position parameter. The spatial localization of wavelets makes them
more suited to present a large class of signals [i.e., spectra can be
represented by far fewer wavelets than sinusoids obtained from
Fourier Transform (FT)]. WT is categorized into continuous wavelet
tools and discrete wavelet tools. Usually, continuous wavelet tools
are used for signal analysis, such as self-similarity analysis and
time-frequency analysis. However, discrete wavelet tools are em-
ployed for both signal analysis and signal processing, such as noise
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reduction, data compression, and peak detection. A more detailed
introduction to the theory and potential application of WT is avail-
able in books [2–4].

Generally, the Continuous Wavelet Transform (CWT) of a signal,
f (t), can be written as:
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where τ and s are the so-called translation (or time location) factor
and the scaling (or dilation) factor, respectively. Factor s −1 2 is for
energy normalization across the different scales, whereas Ψτ,s(t) can
be obtained by dilations and translations of a single function Ψ(t),
the so-called ‘‘mother wavelet’’, as follows:
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Thus, the original signal can be exactly reconstructed from the
wavelet coefficients by Inverse Wavelet Transform (IWT):
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and Ψ(ω) is the FT of the mother wavelet.
If s s j= 0 and τ τ= ∈ ≠( )k s j k Z sj
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re-written as:

Ψ Ψj k
j jt s s t k, ( ) = −( )− −

0
2

0 0τ

This is used in the computation of Discrete Wavelet Transform
(DWT), where s0 = 2 and τ0 = 1 (dyadic dilations and translations) are
generally used. DWT is very useful in compressing data, because it does
not change the amount of data (the total number of coefficients is equal
to that of data points of the original signal), but the relevant informa-
tion is often stored in only very few coefficients.

The basic idea of wavelet analysis is that of multi-resolution signal
decomposition introduced by Mallat (i.e., the simultaneous appear-
ance of a signal on multiple scales to study its various features) [5].
This algorithm consists of a series of successive decompositions of
the signal (with length 2n) into two components: ‘‘detail coeffi-
cients Dj’’ and ‘‘approximation coefficients Aj’’, both with a reduced
size of 2n-j, where j is the decomposition level. At each level, the input
signal is decomposed by high-pass filters to record the high-
frequency components and low-pass filters to extract the low-
frequency components for the next scale. The procedure is repeated
with sets of high-pass and low-pass filters until at a prescribed level
j is reached (j ≤ n).

By doing so, signal f(t) can be written as a limit of successive
approximations at different approximation subspaces, while each
of the approximations at subspaces is a smoother version of f(t).
According to the Mallat’s algorithm, in the case of CWT, a signal can
be decomposed with wavelets as follows:
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where φj,k(t) and Ψj,k(t) are called scaling functions and wavelet func-
tions, respectively. Aj,k and Dj,k are the approximation coefficients
and the detail coefficients mentioned in the Mallat’s algorithm. At
each successive scale (or decomposition level), only high-frequency

information (noise) is retained in the details, while the low-
frequency information (signal features) is retained in the
approximations. The de-noised signal can then be reconstructed with
the new estimated wavelet coefficients:
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where Anopt,k are the approximation coefficients at the optimal de-
composition level nopt, and Dj k,* are the detail coefficients retained.

3. Noise removal and resolution enhancement

Noise distortion can occur during spectral signal acquisition and
transmission. Unfortunately, most optical instruments are often
limited in sensitivity and specificity by noise fringes superim-
posed on the recorded spectra. To remove unwanted components,
WT was investigated for automated implementation of baseline
removal. It was noted that, with synthetic data sets designed to ex-
emplify vibrational spectroscopic signals, WT could filter out high-
frequency noise but was less successful with high signal-to-noise
ratio (SNR) spectra and in congested regions [6]. In addition, the ap-
plicability of translation-invariant WT in filtering light signals from
spectrophotometers was studied [7]. The main advantages of this
technique are a substantial increase in the SNR and preservation
of the spectral peak location and width, as compared to Gaussian,
Wiener and orthogonal wavelet filters using a fixed threshold. On
the other hand, laser-induced breakdown spectroscopy signals could
be de-noised by an extension of the Donoho’s scheme, which uses
a redundant form of WT and an adaptive threshold-estimation
method [8]. Adaptive stationary wavelet filtering via variable
thresholding offers noise-suppression improvement in parallel with
signal preservation, which is superior to that offered by DWT
thresholding and Gaussian filtering.

In another study, a methodology based on an improved, second-
generation Adaptive Wavelet Transform (AWT) algorithm was
presented for Raman spectral denoising and baseline elimination
[9]. This methodology uses a spectrally adapted lifting scheme to
generate an infinite basis of wavelet filters from a single conven-
tional wavelet, and then finds the optimal one. As a result, it is more
efficient than DWT because it enables the custom design of wavelet
filters according to the topological characteristics of Raman spectra
at hand. CWT was also suitable for removing the variant back-
ground of NIR diffuse reflectance spectroscopy in pharmaceutical
analysis [10]. Nevertheless, DWT could be successfully used for de-
noising short-wave NIR reflectance spectra when the preprocessed
data were used as the input of the Support Vector Machine (SVM)
system, especially when the number of samples was small [11].

A wavelet-based denoising technique was applied to a quantum-
cascade laser spectrometer for in situ and real-time atmospheric
trace-gas measurements [12]. The wavelet digital-filter technique
in post-signal processing proved to give better measurement pre-
cision and higher detection sensitivity without reducing the fast
temporal response, as compared to other commonly used digital-
filter techniques (i.e., Kalman filter, Wiener filter and moving
average). Because both wavelets and Kalman filters could handle
non-stationary signals, a more promising technique based on in-
corporating both WT and Kalman filter (i.e., a wavelet-based Kalman
filter) would be more effectively applied for trace-gas sensors. It was
also found that CWT has better space-time resolution and is rela-
tively simpler to perform, as compared to DWT, for the elimination
of the fluctuating background in NIR spectra [13]. WT produces better
calibration models of NIR single-beam spectra, with improve-
ments in concentration prediction of the order of 30% being realized
relative to models based on second-derivative spectra or spectra pre-
processed with simple additive and multiplicative scaling correction
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