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A B S T R A C T

Public awareness related with environmental issues (e.g. soil and water contamination) is on the
increase, determining the advent of more astringent safety standards where new analytical methods are
required to complain with these guidelines. Infrared (IR) spectroscopy is originated from the absorption
measurements of different IR frequencies and has become a very attractive technique to measure heavy
metals and other contaminants in soils, sediments and water. The aim of this review is to provide with an
overview of different applications of near infrared (NIR) spectroscopy addressing issues related with
contamination in soil, sediments and water. A discussion on the main factors or variables that affect the
results of this type of applications is provided.
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1. Introduction

There are several contaminated soil sites in the world, and with
an increasing population and associated health risk there is a
growing pressure to remediate them [1–3]. Public awareness of
environmental issues (e.g. soil and water contamination) is also on
the increase, determining the advent of more astringent safety
standards where new analytical methods are required in order to
complain with these guidelines [1–3]. In addition, due to extensive

oil exploitation, refining and transportation, oil pollution has also
become a major source of water and soil contamination [1–3].
Although a number of standard procedures and methods are
currently in use in order to quantify total petroleum hydrocarbons
(TPHs) and other contaminants in soils, sediments and water, these
methods require time- and labor intensive sample preparation
steps, where in many cases the use of solvents and reagents are
needed and not adequate for in field monitoring [3].

Contaminants include a wide range of natural and synthetic
metallic and organic compounds, minerals, hydrocarbons, and
radioactive wastes that can be found in soil and ground water
samples representing a serious threat to health and safety [4].
Detecting and monitoring these contaminants is therefore a
challenging task [4,5]. Traditional site characterization methods
involving drilling and sampling (e.g. soil, groundwater) and often
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require laboratory analysis that are time-consuming, laborious,
expensive and expose personnel to contaminated media [3–4].

In recent years, emphasis has been placed on the development
of rapid methods and sensors to monitor different contaminants in
soils, water and air. For example, for the analysis of soil samples a
variety of sensors have been evaluated such as temperature and pH
probes, pressure transducers, miniature camera, electrical resis-
tivity, laser induced fluorescence, infrared (IR) and Raman
spectroscopy [3–6]. Two recent papers have reviewed the use of
vibrational spectroscopy methods including near (NIR) and mid
infrared (MIR) spectroscopy as well as other sensors used to
monitor and measure heavy metals and other contaminants in soil
and water [3,4].

The aim of this review is to provide with an overview of
different applications of near infrared (NIR) spectroscopy address-
ing issues related with contamination in soil, sediments and water.
In addition, a discussion on the main factors or variables that affect
the results of this type of applications is also provided.

2. General overview of near infrared spectroscopy

Infrared (IR) spectroscopy is originated from the absorption
measurements of different IR frequencies by a sample positioned
in the path of an IR beam (e.g. NIR and MIR beams) when the
frequency of a specific vibration is equal to the frequency of the IR
radiation directed at the molecule, this molecule absorbs the
radiation [7–11]. Generally speaking absorption spectroscopy is
based on the Beer–Lambert law stating that for a homogeneous
and non-scattering liquid sample, the concentration of an absorber
is proportional to the sample absorbance [7–11]. Near IR is
characterised by the overlapping of many different overtone and
combination vibrations (vibrational modes of C��H, N��H, and
O��H chemical bonds) resulting in broad bands resulting in NIR
spectra data with low structural selectivity compared with mid
infrared (MIR) spectra where fundamentals are more resolved,
allowing the structure of a sample to be better elucidated [7–11].
The overtones in the NIR region correspond to energy transitions
that are higher than those for fundamentals (MIR) and in particular
the frequencies of the first and second overtones correspond to
about two or three times that of the fundamentals observed in the
MIR region [7–11]. Combination bands result from transitions
involving two or more different vibrational modes of one
functional group occurring simultaneously where the frequency
of a combination band is the sum or the multiples of the relevant
frequencies [7–11]. The absorption intensity decreases when the
overtone level increases. The higher energy of NIR radiation and
the presence of combination vibrational bands made NIR
spectroscopy a better tool when complex and wet samples (soils
and sediments) are analysed compared with MIR spectroscopy [7–
11]. Overall, NIR spectroscopy is widely adapted to determine
organic matter constituents in several types of samples (e.g.
liquids, solids, gas) [7–11].

3. Applications of near infrared in the detection and monitoring
of contaminants

3.1. Heavy metals

The application of NIR reflectance spectroscopy was reported
for the prediction of heavy metals in freshwater sediments from
Canada by Malley and Williams [12]. Samples were analysed in the
NIR range (1100 and 2500) and partial least squares (PLS)
regression was used to develop calibration models for the heavy
metals in the sediments [12]. The coefficient of determination (R2)
between NlR data and the concentration of heavy metals measured
using reference methods were for Cd 0.63, for Cu 0.91, for Zn 0.93,

for Pb 0.81, for Ni, 0.88, for Mn 0.93 and for Fe 0.86 [12]. The
analysis of the wavelengths derived from the PLS models indicated
that most of the variance in the heavy metal concentration was
attributed to the presence of proteins, cellulose, and oil in the
matrix of the sediments [12]. According to these authors the first
PLS factor accounted for 75–95% of the variability in the data for
each metal, except for Cd (50%). The different behavior for Cd was
also attributed to its much shorter geological time in the lake and
to its proportionately greater association with inorganic ligands as
compared with the other metals [12]. A multivariate calibration
method combining PLS regression and reflectance spectra in the
visible (VIS) and NIR regions was used to characterise soil
properties such as organic matter (OM) and clay content that
are inter-correlated with concentration levels of Cd and Zn [13].
Several spectral pre-processing methods such as normalisation,
multiplicative scatter correction (MSC), derivatives and standard
normal variate (SNV) transform were explored by these authors in
order to improve the robustness and performance of the
calibration models [13]. No pre-processing method gave the best
results for Cd and Zn with a root mean standard error in cross
validation (RMSECV) equal to 0.68 and 80.97 mg kg�1, respectively
[13]. The combination of VIS–NIR spectroscopy was also reported
to predict the concentrations of As, Cd, Cu, Fe, Hg, Pb, S, Sb, and Zn
in the samples [14]. The prediction of heavy metals was achieved
by stepwise multiple linear regression analysis (SMLR) and
artificial neural networks (ANN) [14]. The R2 reported by these
authors were for As 0.84, for Fe 0.72, for Hg 0.96, for Pb 0.95, for S
0.87 and for Sb 0.93 [14]. No correlation was obtained for Cd (0.51),
Cu (0.43), and Zn (0.24). Analysis of the PLS correlation coefficients
indicated that absorptions features of iron and iron oxides
contributed to explain the calibration results obtained [14].

Soil samples representing a wide range in pH, soil organic
carbon (SOC) and textures (clay, sand and silt) were analysed using
in the VIS and NIR range (400–2500 nm) [15]. The R2 reported by
these authors were 0.97, 0.94, 0.80, 0.99 and 0.96 for Fe, Cd, Cu, Ni
and Zn, respectively [15].

The determination of Hg concentration in suburban agricultural
soils from the Nanjing region was achieved using VIS–NIR
spectroscopy [16]. Several spectral pre-treatments (absorbance,
Kubelka–Munk transformations and derivatives) were applied to
the reflectance spectra to optimize the accuracy of the prediction
models [16]. The prediction of Hg concentration was achieved by
univariate regression and principal component regression (PCR).
The optimal model (R = 0.69, RMSEP = 0.15) for the predicting of Hg
was achieved using the PCR regression with Kubelka–Munk
transformation [16]. Correlation analysis revealed that Hg concen-
tration was positively correlated with the absorption of goethite
and clay minerals, suggesting that Hg-sorption by clay-size
mineral assemblages in soils was the mechanism by which to
predict spectrally featureless Hg [16].

The capability of measuring heavy metals and their effect on the
chemical composition of forest soil was explored using VIS–NIR
spectroscopy [17]. These authors proposed a quantitatively tool to
determine total (TOT) and exchangeable (EXC) concentrations of Zn
and Pb (Zn-TOT, Pb-TOT, Zn-EXC, Pb-EXC) as well as other chemical
and microbial properties in forest soil samples polluted with heavy
metals [17]. Samples were analysed using VIS–NIR (400–2,500 nm)
spectroscopy and principal component (PC) scores and PLS
regression was used to develop the calibration models [17]. For
quantitativeestimations, the bestcalibrationmodelwasobtainedfor
the ratio between SOC and N-TOT (R = 0.98) [17]. The models for SOC,
N-TOT, and microbial properties were satisfactory but less accurate.
NIR spectroscopy failed to accurately predict S-TOT, ratio SOC and S-
TOR, Zn-TOT, Pb-TOT, Zn-EXC, and the ration Pb-EXC to SOC [17].

The use of VIS–NIR spectroscopy was used to predict As
contamination in soil samples [18]. PLS regressions as well as
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