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A B S T R A C T

Vibrational spectroscopy studies often generate datasets containing multiple spectra that are categorized
into distinct groups according to similarity. Principal components analysis (PCA) is one of the most
frequently used multivariate analysis methods for data reduction of vibrational spectra and visualization
of potential groupings between subjects. Vibrational spectra usually display unimodal or multimodal
distribution patterns of absorbance or transmittance across wavenumbers. PCA, requires that a linear
relationship exists between data distributions of the objects under analysis otherwise the method is
prone to a serious artifact known as the ‘horseshoe effect’. This artifact, well known in other fields of
science, manifests as a serious distortion of the pattern of how objects group according to the most
important principal components leading to misinterpretation of the relationships between the samples
from which they are derived. In this paper, using a simulated mid-infrared spectral dataset, we
investigate for the first time the potential for the PCA horseshoe effect on vibrational spectra and the why
this artifact occurs. We show that when comparing large regions of contiguous wavenumbers between
multiple spectra there can be a non-linear relationship between distributions of different spectra. Such
non-linearity causes the horseshoe effect and we demonstrate that the degree of distortion of how
spectra map on the first two components is related to the region size. We further show that reducing the
size of spectra analyzed by PCA can minimize the horseshoe effect. We conclude that PCA should be used
with caution in the analysis and interpretation of vibrational spectra and the application of more robust
methods should be explored.

ã 2015 Published by Elsevier B.V.

1. Introduction

Vibrational spectroscopy studies often generate datasets
containing multiple spectra that are categorized into distinct
groups according to similarity. This is especially true of studies
using mid/near-infrared or raman spectroscopy for characteriza-
tion of molecular composition or structure and biomedical
diagnosis using fluids or solid tissue [1]. Simple statistical analysis
of complex biological sample spectra is often not appropriate due
to the sampling of multiple spectra, differentiation of spectra by
group and strong overlapping spectral features. Therefore,
multivariate analysis methods are usually deployed to large
datasets to assist in visualization of relationships of spectral
features either within or between groups of spectra.

Multivariate analysis methods are a group of statistical
procedures used to simultaneously analyze three or more
variables. One of the oldest and most commonly used of these
methods is principal components analysis (PCA). Although a major
data reduction tool in chemometrics, this technique has been
widely used in many scientific fields as diverse as molecular
biology [2], the behavioural sciences [3] computational toxicology
[4], industrial chemistry [5] and ecology [6]. We can cite but a few
of many studies in the literature where PCA has been used on
vibrational spectroscopic data to develop discriminatory models
for diverse objectives such as disease diagnosis [7,8], cell type
characterization [9], bacterial strain differentiation [10] as well as
seed varieties [11]. Another important application of vibrational
spectroscopy is in determination of single biomolecule structure,
particularly protein secondary structure [12–14]. PCA has been
used to associate protein absorbance change and shift in
frequencies due to altering environmental conditions such as
temperature for both near [15] and mid infrared spectroscopy [16].

The main objective of PCA is to extract important information
from a table of high dimensional data with inter-correlated
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variables into new and fewer uncorrelated variables. These
reduced variables reveal trends in the data that are otherwise
difficult to visualize. For vibrational spectroscopy data, this table of
absorbance would be comprised of rows of individual spectra
where each column represented the wavenumbers in the spectra.
The table is often mean centred prior to PCA. A covariance matrix is
calculated from the data table from which eigenvalues (variance
explained) and eigenvectors are found and eigenvectors ranked
according to the size of eigenvalue. This new matrix of data
describes a multidimensional coordinate system where the axes
are rotated so as to align with the greatest variation of the data. The
first axis, or principal component, captures the most variation as
this eigenvector has the largest eigenvalue. The second component
captures the second highest variance, independent from the first,
and so on. The eigenvector is a series of weights (loadings) for each
wavenumber on a component. Linear combinations of these
weights with the original data can be summed to give scores for
each spectrum on a component. Thus, the relationships between
spectra according to how they co-vary by wavenumber absorbance
may be visualized in this coordinate system by plotting the scores
of each spectrum on the most important components. In this way,
potential groupings of spectra by similarity are easily visualized
using scatterplots. For a full introduction into the concepts and
detailed steps of PCA, readers are referred to some popular
introductions [17,18].

PCA is however prone to a serious artifact that can lead to false
interpretation of how objects under consideration could group. In
the field of ecology it is well known that when species abundance
data along a sampling gradient (species response curve) are
analyzed by PCA then the resulting scatterplot of species scores on
the first two components will often show a distortion [19]. This
distortion occurs when the second axis is curved and twisted
relative to the first as an arch or “horseshoe” pattern of objects and
is not a true secondary gradient. The cause of the horseshoe effect
relates to the fact that species response curves are unimodal in
distribution (like a Gaussian curve) especially over a long gradient
where there are few species sampled at the ends of the gradient.
Even though species may be truly different in abundance along a
gradient, they may all share low or zero abundance at the tail ends.
This shared zero abundance is meaningless in terms of how species
vary but PCA assumes species similarity at these points which
manifests in similar scores on component two and its arch over

component one [20,21]. The horseshoe effect is also not confined to
unimodal species response curves in ecology but also with more
complex multimodal models [18]. PCA is only really useful when
objects are linearly related to each other as monotonic distribu-
tions or when the gradient assessed is short.

An absorbance (or equally transmittance) band in a vibrational
spectrum displays a unimodal distribution and is analogous to a
unimodal species response curve in ecology. A whole absorbance
spectrum is analogous to a multimodal species response curve.
This suggests that PCA applied to regions of contiguous wave-
numbers across a series of spectra with variable band peak
positions (a common practice), could be susceptible to the
horseshoe effect and misinterpretation of results.

In this paper, using a simulated mid-infrared spectral dataset,
we investigate for the first time the potential for the PCA horseshoe
effect on vibrational spectra and the why this artifact occurs. We
show how use of regions of contiguous spectral wavenumbers
causes the horseshoe effect and the degree of distortion is related
to the region size.

2. Methods

A dataset was created for 15 spectra in the mid-infrared spectral
range. The simulated spectra were loosely based on the series of 25
temperature dependent spectra for Bovine pancreatic ribonuclease
A (RNase A) reported by Wang et al. [16] after that protein had been
subjected to 2 �C increments between 25 and 70 �C. In that study,
the RNase A spectra between 1600 and 1700 cm�1 showed
absorbance at 1641 cm�1 that weakens as temperature increases
with the formation of a band at 1653 cm�1. Two weak bands were
also observed at 1615 and 1689 cm�1 that varied with temperature.

In our artificial dataset we generated 15 simulated spectra
between 1600 and 1700 cm�1 at a resolution of 4 cm�1 for a
temperature range between 15 and 85 �C and a temperature
increment of 5 �C. Thus, our dataset is not intended to replicate that
published by Wang et al. [16] but to be one that simply shows a
similar pattern of variable multimodal spectra over a 72 data point
wavenumber range of 100 cm�1. Each spectrum was created by
curve fitting at each of the four wavenumbers described by Wang
et al. [16], varying the full-width at half-height and standard
deviation.

Fig. 1. The 15 absorbance spectra simulating absorbance of RNase A between 1600 and 1700 cm�1 with a 2 �C increment between the range of 25 and 70 �C. As the
temperature increases the absorbance maximum weakens and shifts from 1641 cm�1 to around 1653 cm�1.
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