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a  b  s  t  r  a  c  t

Raman  spectroscopy  of  the  VOx nano-ribbons  is  discussed  in  the  framework  of  the  Richter  (1981)  equation
for optical  phonon  confinement  (a)  as modified  for thin  films  by Fauchet  and  Campbell  (1986),  (b)  as
presented  by  Kim  and  co-workers  for  slabs,  (c) as  explained  by  Eklund’s  group  for surface  phonons  and
(d) our  own  modification  based  on  the  transformation  from  the  spherical  coordinates  in  the  Richter
equation  to  Cartesian  coordinates;  the  latter  being  in  keeping  with  the ribbon  geometry.  The  change  of
coordinates  also  influences  the  profiles  of  the  phonon  dispersion  curves.  Phonon  splitting  is  ascribed
to  the  bi-layer  and core–shell  geometries  of the  ribbons  and  this  is used  to  calculate  the  ratio  of  the
V5+ to  V4+ to  the  value  of  0.54  ±  0.10.  This  is  in perfect  agreement  with  the  V5+/V4+ ∼  54.60%  from  X-ray
photo-electron  spectroscopy  (XPS)  measurements.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Vanadium oxide (VOx) is one of several transition-metal oxides
that exhibit metal-to-insulator transition. The several main groups
among the vanadium oxides are VnO2n−1 (e.g. V2O3, V7O13) [1],
VnO2n+1 (e.g. V2O5, V6O13 and V3O7) [2,3], VnOn (e.g. VO, V2O2)
and VnO2n [3].  Among the VnO2n class, VO2 is the most interesting
because its transition temperature is close to room temperature
(Tc ∼ 340 K), and it displays ∼105 decrease in resistivity as well as a
large change in transparency in the infrared region. VO2 is known
to exist in four polymorphs (a) the most stable VO2 rutile VO2(R),
(b) the metastable VO2(M)  with a slightly distorted rutile struc-
ture, (c) a tetragonal VO2(A) and (d) the metastable VO2(B) with a
monoclinic structure [4].

VO2 is thermo-chromic and can be used for window coatings
to keep homes and buildings cool in summer and warm in win-
ter, thereby saving electricity. VO2 has been analysed by Raman
spectroscopy [5].  This important material has been used in plas-
monics [6] and ultrafast switches (since it shows a switching period
of ∼100 fs), holographic storage and recording industry [7] and pro-
tection from laser guided missiles in defence [8].  Raman spectra
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of the CuO–V2O5–P2O5–CaO [9] glass system VOx [10], VOx sup-
ported on silica [13] have been presented. V2O5 finds applications in
gas sensors [11], rechargeable vanadium batteries [11], vanadium
superconducting SQUIDS [12] and hydrogen storage [14]. There
have been some reports on Raman spectroscopy of VO2 [5],  and
V2O5 [9,10,13,16] but, to our knowledge, none on the bi-layered
|V2O5|VO2| or VO2@V2O5 core–shell nano-ribbons of a combina-
tion of these phases and let alone the phenomenon of phonon
confinement, phonon splitting and electronic transport on these
structure. Also it has been difficult to determine phonon disper-
sion relations for the vanadium oxides by calculation [17] and let
alone by the traditional neutron scattering method [18]. Due to
vanadium’s large scattering cross-section of neutrons, cans made
from it are used in holding samples in typical neutron scattering
experiments. So, it is difficult to find published data on phonon dis-
persion curves and their equations by this method in vanadium or
its oxides. Here we  attempt this task by Raman scattering through
phonon confinement in ultrathin ribbons.

2. Background theory on phonon confinement and phonon
splitting

Among the spatial correlation models, the phonon confinement
model by Richter et al. [19] has been the most employed in studying
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confined optical phonons in spherical structures due to spatial size
effects. The so-called Richter equation is given by

I(ω) = A0

∫ ∞

−∞

[ ∣∣C(0, q)
∣∣2

(ω − ω(q))2 + (�0/2)2

]
d3q (1)

where A0 is a pre-factor to be determined from experiment,
|C(0,q)|2 are Fourier coefficients that depend on the size of the
particle that scatters the light and the phonon momentum, ω is
the phonon wave-number, ω(q) is the phonon dispersion relation
for the material in the particle and � 0 is the full width at half
maximum of the phonon peak of the bulk material. The C(0,q)
signifies that apart from the zone centre phonon of momentum
q0 = 0, there exists other phonons whose momentum q /= 0 but
centred at q0. Campbell and Fauchet [20,21] suggested that the
Fourier coefficient |C(0,q)|2 d3q be given by exp(−q2d2/16�2) d3q.
Their other achievement was their ability to extend the Richter
model to other shapes of the micro-crystals such as what they
called columnar (nano-rods, nano-wires) and also thin films. They
argued that for thin films of thickness, �, |C(0,q)|2 should be equal
to exp(−q2�2/16�2)|1 − erf(i�/

√
(32�))|2.

Campbell and Fauchet admittedly saw very small significance in
replacing the Gaussian with other size-distribution functions espe-
cially for spherical nano-crystals. Also the Fourier coefficients for
thin films and columnar shapes make the Richter equation even
more complicated in that one performs integration within another
numerical integration with the second integration being complex
in nature. A simpler approach to modifying the Richter equation
to include other novel nano-crystal shapes has been considered.
Following this argument, the Richter equation has been modified
to account for the geometry of nano-wires by Piscanec et al. [22]
and by Adu et al. [23,24] by changing the d3q term for a sphere
to 2�q⊥dq⊥ for rods such that the Fourier coefficient is given by
2�q⊥exp(−q⊥2d2/16�2) dq⊥. Note that the constant 16�2 has been
replaced with a scaling parameter ˛wire that can be evaluated dur-
ing the data fitting, as was performed by Mwakikunga et al. on
WO3 nanowires [25]. As for quantum dots, it is assumed that these
structures are quasi-zero dimensional and hence all the atoms are
surface atoms. Therefore, the d3q term in Richter equation has
been approximated to d3q ∝ q2dq [22]. Appropriately, this is equiv-
alent to replacing d3q by the momentum volume of 4�q2dq to give
|C(0, q)|2 = 4�q2 exp(−q2d2/a2

QD) dq for quantum dots.
Slab-like nano-structures such as nano-belts, nano-platelets

and nano-ribbons have phonon confinement only in one dimen-
sion. Dielectric continuum models developed as early as 1965
[26] and given in a review by Ruppin and Englman [27]
have been extensively used to explain surface optical (SO)
phonons as a function of dielectric constants of the mate-
rial and the surrounding media. The SO phonon frequencies
in this case are between transverse optical (TO) and longi-
tudinal optical (LO) phonon frequencies given as [28]: ωSO =√

[({(m + 1)/m}ω2
TO + (ε∞/ε)ω2

LO)/({(m + 1)/m}  + ε−1ε∞)]. Such
phonons have been reported to bear phonon dispersion relations
given for symmetric (S) and anti-symmetric (AS) modes respec-
tively as: ω2

SO(q)S = ω2
TO[(ε0 tanh(qiLi/2) + εm)/(ε∞ tanh(qiLi/2) +

εm)] and ω2
SO(q)AS = ω2

TO[(ε0 coth(qiLi/2) + εm)/(ε∞ coth(qiLi/2) +
εm)].

SO phonons in cylindrical nanowires were noticed in core–shell
GaP@GaN nanowires [29] and explained by Gupta et al. [30] and by
Xiong et al. [31,32] in rectangular cross-section nanowires of ZnS.
Recently, SO phonons from 50-nm thick GaN nano-ribbons were
reported [33]. Although, Xiong et al. [34] has reviewed SO phonon
frequency to relate SO phonons to the particle size and shape, this
has been done on ribbons no thinner than 20 nm and the the-
ory employed has been up to the traditional dielectric continuum

Fig. 1. Lermann’s theory of phonon splitting based on stress studies could fit exper-
imental data only if the wire width was not less than about 70 nm.

Adapted from Ref. [37]

models already mentioned. Around this thickness, the Richter
phonon confinement model is pushed to its limits and therefore
such ribbons can be regarded as bulk [35,36]. Also, SO frequencies
falling between TO and LO cannot explain new phonons having
frequencies outside this range, but have often been explained by
TO-splitting and LO-splitting. This is now a new phenomenon.

Lermann et al. [37] have previously derived a theory based on
stress in multilayered ZnSe quantum wires to relate the LO-splitting
range to the wire width, but their calculated splitting matched
experimental data only down to about 70 nm of wire width. The
theory failed to fit experimental data below 50 nm as re-produced
in Fig. 1. Kim and Jang [38] however were some of the earli-
est in employing a quantum-mechanics-based Richter equation to
explain confinement in isolated slabs but not TO-splitting or LO-
splitting. Since they did not notice LO- and/or TO-splitting due to
SO phonons in their Raman spectra, they supposed that the Fourier
coefficient must generally be given by f(q) exp(−q2d2/˛slab)dq
where f(q) = 1 for slabs. However, changing only the weighting
function without changing the phonon dispersion relations can
only help adjust the amplitude of the confined phonons with the
aid of ˛slab but without the explanation of the phonon splitting.

In this paper, we suggest re-starting from Richter et al. opti-
cal confinement model and following the simpler approach of
simply changing not only the dimensionality of the d3q momen-
tum volume in the exponential function but also manipulating the
dimensionality of the phonon dispersion relations to suit the nano-
ribbon geometry in the present case.

This way, we have a new proposed model that would easily
explain the phonon splitting in nano-ribbon and other flat struc-
tures.

3. New dimensionality in OPC that suits the ribbon
geometry

Let us consider the following schematics of Fig. 1(a) and (b) of
a ribbon interacting with a laser beam in a typical Raman spec-
troscopy set-up. In performing Raman spectroscopy on ribbons
whose typical length (Lx), width (Ly) and thickness (Lz) are about
1 �m × 400 nm × 10 nm as shown by our AFM results presented in
the forthcoming sections, one expects that confinement of optical
phonons ought to be only in one dimension, that is, the z direction
which denotes the thickness of the ribbon as illustrated in the inset
of Fig. 1(a). We  start from the Fourier coefficients and dispersion
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