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a b s t r a c t

Vibrational frequencies for the nucleobase adenine are calculated by the vibrational self-consistent field
(VSCF) and correlation corrected vibrational self-consistent field (CC-VSCF) methods using Hartree–Fock
(HF), density functional theory (DFT) and second order Møller–Plesset (MP2) theories. A large number
of potential energy surface (PES) points were computed in the anharmonic calculations corresponding
to each method. The quartic force field (QFF) approximation was used to generate the full grid of points
for the VSCF solver. We have implemented our new procedure for computing the mode–mode coupling
integrals in the 2-mode coupling representations of the quartic force field (2MR-QFF) for prediction of
coupling magnitudes. Calculations were performed using the 6-31G(d,p) basis set. Comparison of the
calculated ab initio anharmonic spectra with Ar matrix experimental data of adenine reported in the
literature reveals that, the CC-VSCF (DFT) wavenumbers show the best agreement. The experimental
geometric parameters of adenine are compared with the theoretically optimized molecular structural
parameters. These are found to be in good agreement. Vibrational assignments are based on the calculated
potential energy distribution (PED) values.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The molecular wave equation may be separated by the
Born–Oppenheimer procedure into two equations, one of which
governs the electronic motion and gives the forces between the
atoms. The other equation concerns with the rotational and vibra-
tional motion of atoms [1]. Nearly all of the ab initio methods
utilize the Born–Oppenheimer approximation which involves the
setting up of a potential energy surface (PES) on which the nuclear
motion takes place. The nuclear Schrödinger equation for this
potential is solved and the vibrational energies and wavefunctions
are determined. When this evaluation is based on the harmonic
approximation of the PES, it ignores the strong anharmonicity or
mode–mode couplings among normal modes. In the case of vibra-
tional spectra of large molecules, this leads to large deviations from
experimental data. Vibrational self-consistent field (VSCF) method
is one of the most sophisticated approaches to perform anharmonic
vibrational calculations which provide excellent results without
manual scaling of theoretical frequencies. In the VSCF approach,
each mode is assumed to be vibrating in the average field of other
modes. The vibrational wavefunction is represented by a product of
single normal-coordinate functions that are determined variation-
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ally using the mean-field approximation. The correlation corrected
vibrational self-consistent field (CC-VSCF) [2] method is an exten-
sion of the VSCF method which provides much better results. In
this method, the VSCF wavefunction is corrected for correlation
effects between different vibrational modes by using second-order
perturbation theory (PT2) [3].

In the direct VSCF approach, the PES is generated directly on all
grid points involving a large number of energy evaluations. In the
n-mode coupling representation (nMR-PES), the number of quadra-
ture points required to be evaluated is ∼(f!/n!(f − n)!) × Mn, where
M is the number of grid points along each normal coordinate and
f(=3N − 6) denotes the normal coordinates [4]. N is the number of
atoms in the molecule and it is evident that the computational bur-
den increases very rapidly as the number of atoms increase. Yagi
et al. [4] have described the quartic force field (QFF) approxima-
tion method which employs the least-mean-square method to fit
the potential energies at selected reference points. This method is
usually only slightly less accurate, but it greatly reduces the com-
putational time.

Adenine is an important component of biological systems and
workers have performed a large number of spectroscopic investiga-
tions on it [5–11]. Lappi et al. [12] have reported density functional
analysis of anharmonic contributions to adenine matrix isola-
tion spectra. In the present study, we have applied the VSCF/QFF
and CC-VSCF/QFF schemes to perform anharmonic vibrational
spectroscopy study of the adenine molecule. In the anharmonic
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approximation, coupling between different vibrational modes sig-
nificantly affect the vibrational frequencies. In order to understand
intramolecular couplings in adenine, an approximate method for
calculation of couplings between pair of normal modes has been
presented and couplings for certain modes are discussed.

2. Methodology

Theoretical calculations were performed with the GAMESS-
US [13] quantum computation package on an Intel® CoreTM 2
Quad (2.4 GHz) personal computer. Molecular calculations for ade-
nine were carried out using the Hartree–Fock (HF), second order
Møller–Plesset (MP2) and density functional theory [14,15] meth-
ods. In the DFT calculations, Becke’s three-parameter exchange
functional [16,17] and the gradient-corrected functional of Lee et
al. [18] termed as B3LYP was used. Valence double-� basis set
augmented by d-polarization functions for heavy atoms and p-
polarization functions for hydrogen atoms named as 6-31G(d,p)
basis set has been used in calculations.

The global energy minimum structures of adenine were calcu-
lated utilizing the Monte Carlo procedure incorporated in GAMESS
[13] to generate a random set of starting structures to look for those
with the lowest energy at a single temperature [19,20]. The opti-
mized molecular structures so obtained for adenine were used to
calculate the harmonic vibrational frequencies. Anharmonic cal-
culations were carried out using the VSCF and CC-VSCF methods.
These steps of calculations were carried out using HF, DFT and MP2
theories separately to obtain three sets of data. The potential energy
distribution (PED) values were calculated by using the GAMESS [13]
program.

2.1. VSCF and CC-VSCF methods

The total wavefunction in VSCF is separable into product of sin-
gle mode wavefunctions and is given as

 n(Q1, . . . , QN) =
N∏
j=1

 (n)
j

(Qj), (1)

where N is the number of the vibrational modes and Q1, . . ., QN are
the mass-weighted normal coordinates. The Schrödinger equation
[1] for the molecular vibration is written as⎡
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where V(Q1, . . ., QN) represents the potential energy function for the
system. The VSCF method is based on the separability approxima-
tion. In this approximation each vibrational mode is assumed to be
affected by a mean field of other vibrational modes. The mean field
and wavefunctions of the modes are obtained self-consistently.
It reduces the problem of solving the N dimensional vibrational
Schrödinger equation for the N-mode system to solving N single-
mode VSCF equations [21] of the form[
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(Qj) is the effective VSCF potential for the mode Qj and
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Eqs. (3) and (4) for the single-mode wavefunctions are solved
self-consistently. The VSCF approximation for the total energy is
then given by
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The total VSCF energy of vibrational state n, EVSCF
n , is a sum of all

the individual mode energies minus a term which accounts for the
double counting of the interactions in the energy calculation.

For the CC-VSCF computations [2], the VSCF wavefunction is cor-
rected for correlation effects between different vibrational modes
using second-order perturbation theory. The CC-VSCF approxima-
tion for the total energy is then given as

ECC-VSCF
n = EVSCF
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where �V represents the difference between the true potential
V(Q1, . . ., QN) and the separable VSCF potential and is represented
by

�V = V(Q1, . . . , QN) −
N∑
j=1

V̄ (n)
j

(Qj). (7)

Calculation of IR intensities involves the use of dipole moment
[22]. The expression for intensity is given as

Ii =
8�3NA

3hc
ωi|〈 (i)

0 (Qi)| ��(Qi)| (i)
1 (Qi)〉|2, (8)

where ωi is the VSCF vibrational frequency for mode i and  (i)
0 (Qi)

and  (i)
1 (Qi) are the ground and first excited-state VSCF wavefunc-

tions, respectively.

2.2. Quartic force field (QFF)

The PES for an N-atom molecule can be expressed as a Tay-
lor expansion about the equilibrium structure. When terms higher
than fourth order in the Taylor expansion are neglected, QFF [4] is
written as
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2

f∑
i=1

hiQ
2
i + 1

6

f∑
i,j,k

tijkQiQjQk + 1
24

f∑
i,j,k,l

uijklQiQjQkQl,

(9)

where V0, hi, tijk, and uijkl represent the potential energy, its second-
, third-, and fourth-order derivatives with respect to the normal
coordinates, respectively, at the equilibrium geometry. VQFF(Q) is
partitioned in the nMR-PES scheme [4] as,

V (1)
QFF = V0 +

f∑
i=1

[
1
2
hiQ

2
i + 1

6
tiiiQ

3
i + 1

24
uiiiiQ

4
i

]
, (10)

V (2)
QFF = V (1)

QFF +
f∑
i /= j

[
1
2
tijjQiQ

2
j + 1

6
uijjjQiQ

3
j

]
+ 1

4

f∑
i<j

uiijjQ
2
i Q

2
j , (11)

V (3)
QFF = V (2)

QFF +
f∑

i<j<k

tijkQiQjQk + 1
2

f∑
i /= j<k

uiijkQ
2
i QjQk, (12)



Download English Version:

https://daneshyari.com/en/article/1250646

Download Persian Version:

https://daneshyari.com/article/1250646

Daneshyari.com

https://daneshyari.com/en/article/1250646
https://daneshyari.com/article/1250646
https://daneshyari.com

