ScienceDirect

Hydrothermal *in situ* Ligand Synthesis from 1,10-Phenanthroline-5,6-dione and Characterization of 1D Coordination Polymers $[Co(bpdc)(H_2O)_3] \cdot H_2O$ and $[Cu(bpy)V_2O_6]^*$

WANG Xiu-li^{••}, BI Yan-feng, LIN Hong-yan and LIU Guo-cheng Faculty of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000, P. R. China

Received Aug. 14, 2006

Hydrothermal treatment of $MCl_2(M = Co \text{ or } Cu)$, NH_4VO_3 , and 1,10-phenanthroline-5,6-dione(pdon) resulted in the formation of a duplex coordination polymer [$Co(bpdc)(H_2O)_3$] · $H_2O(bpdc = 2,2'$ -bipyridine-3,3'-dicarboxylate) and a chain-like coordination polymer [$Cu(bpy)V_2O_6$] (bpy = 2,2'-bipyridine). X-ray single-crystal structural analysis shows that under hydrothermal conditions and in the presence of different transition metals, the organic reagent pdon was transformed *in situ* into bpdc and bpy, respectively. Mechanism of the *in situ* ligand synthesis reaction has been discussed.

Keywords Hydrothermal synthesis; In situ; Ligand synthesis; Coordination polymer; Mechanism

Introduction

In situ ligand synthesis has received considerable interest in coordination chemistry and organic chemistry for preparing crystalline coordination complexes, discovering new organic reactions, and understanding their mechanisms^[1-18].

Considerable attention has been paid to study the reactivity of chelate ligands such as 2, 2'-bipyridine (bpy) and 1, 10-phenanthroline under hydrothermal conditions and their hydroxylation reactivities were promoted by transition metal cations, especially copper (II) ions^[4-8,19,20]. 1, 10-Phenanthroline-5, 6-dione (pdon), which is regarded as a bis-chelate bridging ligand that incorporates the orthoquinone and α -diimine moieties has been widely studied^[21-23]. However, the study on the *in situ* ligand synthesis of bpdc from pdon is very limited^[8,24]. To our great surprise, it was observed that the hydrothermal treatment of pdon results in the formation of not only bpdc but also bpy.

This study reports the *in situ* hydrothermal syntheses of bpdc and bpy from pdon and their coordination polymers: a new duplex coordination polymer $[Co(bpdc)(H_2O)_3] \cdot H_2O(1)$ and a chain-like complex $[Cu(bpy)V_2O_6](2)$ that is similar to the compound reported by DeBord *et al.*^[25], but synthesized using a different method. The mechanism of the *in situ* ligand synthesis reactions is also reported.

Experimental

1 Chemical Reagents and Apparatus

All the chemicals purchased were of reagent grade and used without further purification. The ligand pdon was synthesized by following the method described in the literature^[26]. Elemental analyses (C, H, and N) were carried out on a Perkin Elmer 2400 CHN elemental analyzer. The crystal data were obtained using a Bruker Smart Apex II CCD diffractometer.

2 Synthesis of $\{ [Co(bpdc)(H_2O)_3] \cdot H_2O \}$ (1)

A mixture of $CoCl_2 \cdot 6H_2O(23.8 \text{ mg}, 0.1 \text{ mmol})$, pdon(21.0 mg, 0.1 mmol), $NH_4VO_3(11.7 \text{ mg}, 0.2 \text{ mmol})$, HCl(1 mL, 0.1 mmol), and water (15 mL) was stirred for 20 min, then transferred to a 25 mL Teflon-lined stainless steel container, which was then sealed and heated to 160 °C for 72 h. After cooling to room temperature at a rate of 5 °C/h, the resulting solution was filtered and the filtrate was allowed to stand in air at room temperature for several days, yielding the red crystals of complex 1(32%) yield based on Co). Elemental anal. (%) calcd. for $C_{12}H_{14}CoN_2O_8$: C 38.65, H 3.78, N 7.51; found: C 38.60, H 3.82, N 7.44.

3 Synthesis of $[Cu(bpy)V_2O_6](2)$

A mixture of $CuCl_2 \cdot 2H_2O$ (17.0 mg, 0.1 mmol), pdon(21.0 mg, 0.1 mmol), NH_4VO_3 (11.7 mg, 0.2 mmol), HCl(1 mL, 0.1 mmol), and water (15 mL) was stirred for 20 min, then transferred into a

^{*} Supported by Natural Science Foundation of Liaoning Province (No. 20061073) and Education Committee Foundation of Liaoning Province (No. 2004F023).

^{* *} To whom correspondence should be addressed. E-mail; wangxiuli@bhu.edu.cn

25 mL Teflon-lined stainless steel container, which was then sealed and heated to 160 °C for 72 h. After cooling to room temperature at a rate of 5 °C/h, the well blocked-shaped green crystals of complex 2 were obtained (43% yield based on V). Elemental anal. (%) calcd. for $C_{10}H_8CuN_2O_6V_2$: C 28.73, H 1.92, N 6.71; found; C 28.70, H 1.90, N 6.68.

4 X-Ray Crystallographic Analyses of Complexes 1 and 2

Structural measurements of both the complexes were carried out on a computer controlled Bruker Smart Apex II CCD diffractometer equipped with graphite-monochromated Mo K α radiation at radiation wavelength of 0. 071073 nm using the ω scan technique. The structures were resolved by direct methods and refined with the full-matrix least-squares on F^2 using the SHELXS-97 and SHELXL-97 programs^[27,28]. All the non-H atoms were refined anisotropically, and the H atoms attached to C atoms were added at the calculated positions with the distance 0. 093—0. 096 nm.

Table 1 shows the crystal data and details of the collection and the refinement for complexes 1 and 2.

Tables 2 and 3 show the selected bond parameters of complexes 1 and 2.

Table 4 shows the hydrogen-bonding parameters of complexes 1 and 2, respectively.

Table 1	Crystal data and details of collection and
	refinement for complexes 1 and 2

Complex	1	2
Empirical formula	C ₁₂ H ₁₄ CoN ₂ O ₈	$C_{10}H_8CuN_2O_6V_2$
Formula weight	373. 18	417.61
Temperature/K	293(2)	293(2)
Crystal system	Monoclinic	Triclinic
Space group	$P2_1/n$	P-1
a∕nm	0.99822(8)	0.5826(3)
b/nm	0.92287(8)	1.0189(5)
c/nm	1.60500(13)	1.0914(5)
α⁄(°)	90. 00	89.499(6)
β ⁄(°)	97.4940(10)	85.254(5)
γ/(°)	90.00	78.892(6)
Volume/nm ³	1.4659(2)	0.6335(5)
Ζ	4	2
$D_{\text{Calc.}} / (\mathbf{g} \cdot \mathbf{cm}^{-3})$	1. 691	2. 189
F(000)	764. 0	410.0
θ range/(°)	2. 28-29. 03	1. 87—29. 22
Reflections collected	8889	3958
Independent reflections	3563	2919
Goodness-of-fit on F^2	0. 933	0. 945
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0377$	$R_1 = 0.0422$
	$wR_2 = 0.1169$	$wR_2 = 0.1223$
R indices (all data)	$R_1 = 0.0510$	$R_1 = 0.0562$
	$wR_2 = 0.1302$	$wR_2 = 0.1360$

Table 2 Selected bond lengths(nm) and bond angles(°) for complex 1*

angles() for complex 1			
Co-01	0.2059(2)	Co-04	0.2071(2)
Co03#1	0.2088(2)	Co-N2	0.2116(2)
Co02	0.2126(2)	Co-N1	0.2149(2)
01—Co—O4	97.41(11)	01-Co-N2	92.41(10)
01-Co-03#1	89.27(8)	03#1CoN2	88.17(7)
04CoN2	169.87(9)	04—Co—02	88.77(9)
01—Co—02	91.38(10)	N2-Co-02	93.49(8)
03#1—Co—O2	178.19(7)	04—Co—N1	93.83(8)
01-Co-N1	166.95(9)	N2-Co-N1	76.13(7)
03#1—Co—N1	84.22(7)	04Co03#1	89.47(8)
02—Co—N1	95. 47(9)		

* Symmetry transformations used to generate equivalent atoms: #1 -x - 1/2, y + 1/2, -z + 3/2.

 Table 3
 Selected bond lengths(nm) and bond angles(°) for complex 2

ingres() for complex 2				
Cu-02	0.1943(3)	Cu—03	0.1946(3)	
Cu—N2	0.1984(4)	Cu—Ni	0.1986(4)	
Cu—O1	0.2251(4)			
02-Cu03	91.88(13)	02-Cu-N2	92.50(14)	
03CuN2	163.63(15)	02—Cu—N1	172.20(13)	
03—Cu—N1	92.93(14)	N2—Cu—N1	81.22(15)	
02—Cu—01	95.41(13)	03-Cu01	95.90(14)	
N2-Cu-01	99.38(15)	N1—Cu—O1	90.20(14)	

 Table 4
 Hydrogen-bonding parameters(nm, °)

for	comp	exes	1	and	2
-----	------	------	---	-----	---

Comp.	D—H····A	<i>d</i> (D—H)	$d(H \cdots A)$	<i>d</i> (D····A)	∠(DHA)
1	0W	0.064	0. 202	0. 285	171
	04H4B06	0. 088	0. 177	0. 263	165
	0W-HWB07	0.099	0. 209	0. 287	135
	01H1B…O₩	0.072	0. 195	0. 267	175
2	C4H4 AO4	0. 093	0. 242	0. 335	173
	C7—H7A…O4	0. 093	0. 248	0. 339	166

Results and Discussion

1 Crystal Structure

As shown in Fig. 1, all the atoms are located at general positions in complex 1. The Co(II) site shows a distorted octahedral geometry and is ligated by two nitrogen atoms of one bpdc in a chelate mode, one carboxylate oxygen atom(O3A) from another bpdc ligand

Fig. 1 Local coordination environment of cobalt (II) atom in complex 1

A: -x - 1/2, y + 1/2, -z + 3/2.

Download English Version:

https://daneshyari.com/en/article/1251290

Download Persian Version:

https://daneshyari.com/article/1251290

Daneshyari.com