
Vibrational Spectroscopy 72 (2014) 37–43

Contents lists available at ScienceDirect

Vibrational Spectroscopy

jou r n al hom ep age: www.elsev ier .com/ locate /v ibspec

Developing a mobile app for remote access to and data analysis of
spectra�

Matthew J. Evansa, Graeme Clemensb, Christopher Caseya,∗, Matthew J. Bakerb,∗∗

a School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
b Centre for Materials Science, Division of Chemistry, School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, UK

a r t i c l e i n f o

Article history:
Received 20 December 2013
Received in revised form 13 February 2014
Accepted 15 February 2014
Available online 23 February 2014

Keywords:
Mobile app
Spectroscopy
Spectra
Pre-processing

a b s t r a c t

Vibrational spectroscopy is a non-destructive analytical method that can be used to analyse a wide range
of materials. A vibrational spectrum contains information on the chemical structure of the sample being
analysed, which can be recorded rapidly. With hand held mobile device technology being considered
as a relatively mature market, there is an excellent opportunity to combine vibrational spectroscopy
with mobile devices for in situ analysis of samples. There are still instances where analytical instruments
require being linked to desktop PC’s/laptops for instrument control and data manipulation. However,
mobile devices are becoming increasingly more powerful thus, enabling data manipulation on devices
via cloud based technology. With desktop PC’s and laptops often having a larger environment footprint
than the instrumental spectrometer itself, this therefore highlights the potential for mobile spectroscopy
devices. This paper reports the first development of an app (SpectralAnalyser) to enable the use of mobile
devices to access and manipulate spectra and describes the different approaches and implementation
issues considered during the development of apps to display spectra on Android and iOS platforms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Vibrational spectroscopy, such as Raman and Infrared (IR) spec-
troscopy are proven analytical methods, which have been used
to analyse a wide range of materials. With only simple sample
preparation required, a spectrum, which contains information on
the chemical composition of the material being analysed, can be
recorded rapidly. As well as this, the instrumentation needed to
record a vibrational spectrum is simple to operate and relatively
cheap i.e. no expensive reagents needed. Because of these advan-
tages, vibrational spectroscopy has been applied to many real world
problems in many varied areas, such as biomedical [1,2], defence
[3,4], forensics [5], astrochemistry [6], for bio-signatures in the
martian environment [7].

For instance, in the biomedical sphere, vibrational spectroscopy
has been shown to be a valued technique in the analysis of serum
[8], capable of discriminating high grade brain tumours, low-grade
brain tumours and normal patients from 1 �l of human serum to

� Selected paper presented at 7th International Conference on Advanced Vibra-
tional Spectroscopy, Kobe, Japan, August 25–30, 2013.

∗ Corresponding author. Tel.: +44 01772 893278.
∗∗ Corresponding author. Tel.: +44 01772 89 3209.

E-mail addresses: ccasey@uclan.ac.uk (C. Casey), mjbaker@uclan.ac.uk
(M.J. Baker).

sensitivities and specificities of 93.8 and 96.5% respectively [9],
classifying ovarian cancer to an accuracy of 96.7% using plasma
samples [10]. Raman spectroscopy has recently been shown to
be capable of discriminating metastatic brain cancer, high grade
brain cancer and normal cancer from tissue samples using a small
wavenumber range of 600–800 cm−1 to a sensitivity and specificity
of 100% and 94.44% for high grade cancer, 96.55% and 100% for
metastatic brain and 85.71% and 100% for normal brain tissue spec-
tra [11]. In addition, FTIR has proven to be an excellent analytical
technique to quickly determine heavy water concentration in pres-
surised heavy water reactor [12] and FTIR and Raman are capable
of remote sensing of Chemical Warfare Agents (CWAs) [13].

A relatively mature market in hand held instruments and con-
figurable technology provide an excellent opportunity for enabling
mobile in situ analysis of samples using vibrational spectroscopy,
however in situations as described above an ability to place the
spectrometer in a different location to the feedback system would
be of great advantage. For instance, a miniature spectrometer with
cloud based data feedback could be placed in a hazardous loca-
tion to monitor air quality thus, providing real time results back
to scientists outside the hazardous area, or a spectrometer could
be placed in a clinical theatre without the need for an operator
inside therefore, minimising the risk of infection. Currently this is
not possible.

Developments in the mobile/miniature spectrometer tech-
nology and in situ use of spectroscopy require appropriate

http://dx.doi.org/10.1016/j.vibspec.2014.02.008
0924-2031/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.vibspec.2014.02.008
http://www.sciencedirect.com/science/journal/09242031
http://www.elsevier.com/locate/vibspec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vibspec.2014.02.008&domain=pdf
mailto:ccasey@uclan.ac.uk
mailto:mjbaker@uclan.ac.uk
dx.doi.org/10.1016/j.vibspec.2014.02.008

38 M.J. Evans et al. / Vibrational Spectroscopy 72 (2014) 37–43

coinciding developments in software and applications. Some
mobile/miniature spectrometers require the spectrometer to be
linked to a desktop PC/laptop for instrument control and data
acquisition. However, often the desktop PC/laptop has a greater
environmental footprint than the spectrometer instrument.

A mobile applet (app) capable of accessing/manipulating data
would prove extremely useful and the applications wide and varied.
In this study we describe the development of apps for the interro-
gation and manipulation of vibrational spectra using Android and
iOS platforms with cloud-based technology and investigate the dif-
ferent development approaches required and the implementation
issues arising with each platform.

2. Methods and tools

2.1. Development approach

Small prototype apps were developed to evaluate the graphics
and user interface libraries. Once the libraries had been selected,
an iterative incremental approach was used. Requirements for each
iteration, a fixed period or “timebox” of two weeks, were defined
and prioritised before each iteration as MoSCoW lists based on
client feedback. MoSCoW is a “prioritisation technique used in
business analysis and software development to reach a common
understanding with stakeholders on the importance they place on
the delivery of each requirement” [14]. The client classifies the
tasks for an iteration as “Must have”, “Should have” “Could have”,
“Would like, but won’t be implemented”. The developer indicates
the expected time each task should take. To be used effectively,
timeboxing requires at most 60% of the requirements to be of type
“Must have”, so the client and developer can be confident that they
will be achieved within the timebox.

The iterative lifecycle ensured testing was continuous. A benefit
of the Android platform is the heterogeneity of its target devices.
However, this still requires rigorous device testing to ensure a con-
sistent user experience. During development, the application was
tested primarily on a HTC One X handset, and also on a Nexus 7
tablet and a Kindle Fire tablet. The Android Device Emulator was
used during development. However, user interface testing on the
emulator is limited as touch screen gestures cannot be truly simu-
lated using a mouse. The iOS app was tested on an iPhone and an
iPad as well as the iOS emulator.

2.2. A cross-platform application using Qt

Qt is a cross-platform development framework based on C++
[15]. An initial prototype was written using Necessitas 4.8.2, a ver-
sion of Qt which aims to support Android implementations [16]
and the QCustomPlot graphics library [17]. However, although the
implementation ran on an Android-based Nexus 7 tablet, it was
not possible to implement the gesture-based interaction expected
of a mobile application and development switched to O.S.-specific
environments.

2.3. Android application

2.3.1. Development environment and graphics library
The development used the Eclipse IDE, which is the most com-

mon environment for the Android Software Development Kit (SDK)
[18] and provides facilities for writing, testing and debugging
Android applications, this includes integration with the Android
emulator and Android devices. Android applications use the Java
programming language, compiled for the Dalvik virtual machine.

Several graphics libraries, GraphView [19], AFreeChart [20], and
AChartEngine [21] were evaluated through prototypes. The demon-
stration using GraphView was sluggish on a Nexus 7 tablet, but

both AFreeChart and AChartEngine provided appropriate facilities
and performed adequately on the Nexus 7, a Kindle Fire, and an
Android phone.

2.3.2. User interface
The Android application uses an Action bar across the top of the

screen. Since commonly used actions such as “Load” and “Subtract”
are always visible, the user can quickly control the application.
However, because of the Action bar, the application is only sup-
ported on devices that have Android 3.0 and above. Less common
actions such as logging into Dropbox or peak selection are accessed
through the “action overflow” button of the Action bar, so not to
overwhelm the user.

Touch, pinch and pan gestures allow the user to select and
manipulate spectra. However, when labelling peaks, the user must
use the zoom toolbar to vary the number of annotations displayed.

2.3.3. Program structure
The Android application framework is based around “Activities”,

“a single focused thing that the user can do” [22]. The code within
an Activity is initially executed through callback methods activated
at appropriate stages of the Activity Lifecycle, e.g. when the activity
is created, started, paused, resumed or destroyed.

The application has a single activity, which creates the action bar
buttons and the view of the graph and attaches appropriate event
handlers to respond to input events.

Interaction with Dropbox (see Section 2.5.1) uses an AsyncTask
object, allowing the user interface thread to initiate and display
the results of a background operation, while maintaining respon-
siveness to the user while the background task is running. The
developer provides a doInBackGround method that is executed
by a background thread and a doPostExecute method that is exe-
cuted on the user interface thread after the background task has
completed.

2.4. iOS application

2.4.1. Development environment and graphics library
The program was written in Objective C using the XCode IDE,

which provides facilities for writing, testing and debugging iOS
applications, including integration with the iOS emulator and
IPhone/IPad devices. The key algorithms for processing spectra
were translated from Java. The Core-plot graphics library [23] pro-
vided the necessary facilities and appropriate performance.

2.4.2. User interface
An Action bar approach was emulated using icons, most of which

have two actions depending on whether they are pressed or held
down, this saves screen space and simplifies the interface. Whereas
menus in the Android application appear in a Dialog box, the iOS
application has a separate view, implemented by ECSlidingView-
Controller [24] which slides in from the left. This view is populated
either with the available Cloud and local files or with the spectra
that can be selected (e.g. to annotate peaks).

The iOS application also allows pinch and pan gestures. How-
ever, it does not require an extra toolbar to increase the number of
annotations. Instead, it automatically decides which peaks to label
depending on the zoom level.

2.4.3. Program structure
Asynchronous interaction with Dropbox (see Section 2.5.1)

that allows the user interface to remain responsive is pro-
vided automatically by the DropBox iOS API. Methods such as
[DBRestClient loadFile:intoPath:] are asynchronous and
return immediately rather than when the requested action
is completed. The developer implements event handers for

Download English Version:

https://daneshyari.com/en/article/1251824

Download Persian Version:

https://daneshyari.com/article/1251824

Daneshyari.com

https://daneshyari.com/en/article/1251824
https://daneshyari.com/article/1251824
https://daneshyari.com

