
Chemistry and Physics of Lipids 185 (2015) 11–45

Contents lists available at ScienceDirect

Chemistry and Physics of Lipids

journa l homepage: www.e lsev ier .com/ locate /chemphys l ip

Fluid lipid membranes:
From differential geometry to curvature stresses

Markus Deserno ∗

Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

a r t i c l e i n f o

Article history:
Available online 13 May 2014

Keywords:
Lipid membranes
Helfrich theory
Differential geometry
Shape equation
Surface stresses
Surface torques

a b s t r a c t

A fluid lipid membrane transmits stresses and torques that are fully determined by its geometry. They
can be described by a stress- and torque-tensor, respectively, which yield the force or torque per length
through any curve drawn on the membrane’s surface. In the absence of external forces or torques the
surface divergence of these tensors vanishes, revealing them as conserved quantities of the underlying
Euler–Lagrange equation for the membrane’s shape. This review provides a comprehensive introduction
into these concepts without assuming the reader’s familiarity with differential geometry, which instead
will be developed as needed, relying on little more than vector calculus. The Helfrich Hamiltonian is then
introduced and discussed in some depth. By expressing the quest for the energy-minimizing shape as a
functional variation problem subject to geometric constraints, as proposed by Guven (2004), stress- and
torque-tensors naturally emerge, and their connection to the shape equation becomes evident. How to
reason with both tensors is then illustrated with a number of simple examples, after which this review
concludes with four more sophisticated applications: boundary conditions for adhering membranes, cor-
rections to the classical micropipette aspiration equation, membrane buckling, and membrane mediated
interactions.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Lipid membranes are amazing soft matter structures. Self-
assembled from single molecules into fluid films just a few
nanometers thick, they can stably span macroscopic lateral scales.
Many of their characteristic energies (such as the aggregation
energy per lipid or the bending rigidity) are about an order of
magnitude bigger than thermal energy, hence membranes are
stable against thermal fluctuations but soft enough to be easily
deformed, for instance by proteins and the energies available bio-
chemically from ATP hydrolysis. For the same reason undulations
of lipid bilayers are readily noticeable in a microscope as “flicker-
ing,” and they give rise to physically observable effects, for instance
a long-range entropic repulsion between two fluctuating mem-
branes. The strong drop in dielectric constant across just a few
nanometers suffices to make membranes essentially perfect insu-
lators for bare ionic charges, and they also constitute barriers over a
range of permeabilities for a great many other solutes. Membranes
hence compartmentalize space, but they can also change topology
through fission and fusion events, which in turn can be exquisitely
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controlled by several classes of protein machineries. Mixed mem-
branes show a variety of different phases and phase coexistence
regions, and these can couple back to their morphology. All of these
facets of membrane chemistry and physics have been widely stud-
ied over the past decades, and they are the topics of numerous
contributions in this special issue. The present review focuses on
the large scale: how to describe membranes in a way that is both
mathematically elegant and efficient as well as physically intuitive.

One curious aspect of the way lipids assemble into bilayers is
that the emergent area per lipid is a remarkably stiff degree of free-
dom: membranes are hard to stretch but easy to bend. Of course,
stretching and bending are not dimensionally equivalent, so the
meaning of “lower in energy” will have a length scale hidden in it.
A better way to phrase the statement is therefore as follows: Take a
flat membrane patch and stretch it by some dimensionless strain s,
thus increasing its energy. Alternatively, curve it into a closed but
tensionless spherical vesicle of radius R. If the two energies hap-
pen to be equal, what is the value of R? A simple calculation (see
Section 3.2) gives the answer

Rs = 1
s
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where � and � are the bending and Gaussian curvature modulus,
respectively, and KA is the area expansion modulus. Inserting typ-
ical values for these material parameters and choosing a strain of
s = 1% leads to R≈80 nm. Quite small strains correspond to fairly
large curvatures (in the sense that this radius is only about 20
times bigger than the bilayer thickness, while a membrane’s lat-
eral size can easily exceed its thickness by three to four orders of
magnitude).

For the purpose of the present review, the probably most
remarkable aspect of fluid lipid membranes that follows from
this observation is that on length scales not much bigger than
their own thickness, their physical behavior can be described with
astonishing accuracy by a purely geometric Hamiltonian—one that
penalizes curvature. In the early 1970s this insight dawned on
Canham (1970), Helfrich (1973) and Evans (1974), and the theo-
retical (and often closely linked experimental) work that followed
from this idea ushered in a golden era for membrane science.

Unfortunately, curvature elastic surfaces come along with
some challenging math. For instance, more than a decade passed
between the discovery of the energy functional (Canham, 1970;
Helfrich, 1973; Evans, 1974) and the appearance of its associated
Euler–Lagrange equation in the physics literature (Ou-Yang and
Helfrich, 1987, 1989).1,2 This so-called “shape equation,” in turn,
is a formidable fourth order partial nonlinear differential equation,
and finding a general analytic solution for this behemoth seems
a forlorn hope. In the 1990s substantial efforts were devoted to
numerically solving this (or a closely related) equation—mostly for
the special case of axisymmetry (Svetina and Žekš, 1989; Seifert
and Lipowsky, 1990; Lipowsky, 1991; Seifert et al., 1991; Jülicher
and Lipowsky, 1993, 1996; Jülicher and Seifert, 1994; Miao et al.,
1994), but occasionally also for the general case (Heinrich et al.,
1993; Kralj-Igliç et al., 1993). The reader will find more details on
this in existing reviews (Seifert and Lipowsky, 1995; Seifert, 1997).

As important as the extensive numerical results have been, they
might also have contributed to a feeling that outside heavy numer-
ics or perturbation theory little can be said about the general case.
The shape equation expressed in some parametrization does not
readily reveal its structure, and even though a first integral for
the axisymmetric case had been found (Zheng and Liu, 1993), its
physical meaning remained elusive. And yet, there exists a link
between the symmetry of variational problems and the solutions
of their associated Euler–Lagrange equations: Noether’s theorem
(Goldstein et al., 2002). Continuous symmetries, such as transla-
tions and rotations, go along with conservation laws and, in field
theory, conserved currents that permit one to discuss exact prop-
erties of these solutions even if one cannot actually find them. The
consequence for membranes is that there exist objects—the stress
and the torque tensor—which are divergence free as evaluated on
the surface of the membrane (Capovilla and Guven, 2002a,b, 2004;
Capovilla et al., 2002). The resulting conservation laws hold even
if the specific membrane shape has no discernible translation or
rotation symmetry, for they are a consequence of the symmetry of
the Hamiltonian, not of a specific solution.

1 The work by Ou-Yang and Helfrich (1987, 1989) introduced the shape equa-
tion to physicists, but in other communities it had been well known. The special
case K0 = 0 was worked out a decade earlier by Jenkins (a mechanical engineer)
(Jenkins, 1977a,b), and mathematicians knew it long before then (Thomsen, 1924;
Blaschke, 1929; Willmore, 1965, 1982; White, 1973; Pinkall and Sterling, 1987).
Since including K0 does not incur any additional complications, these earlier publi-
cations deserve more credit than is usually given to them in the physics community.

2 Even afterwards, a widely used axisymmetric specialization of the shape equa-
tions was claimed to be incorrect (Hu and Ou-Yang, 1993; Naito et al., 1993; Zheng
and Liu, 1993), a criticism that was refuted on the basis that more attention needs to
be given to the boundaries during functional variation (Jülicher and Seifert, 1994).

The existence of stress- and torque-tensors, which are explicit
functions of a membrane’s geometry, affords profound insights
not only into the nature of solutions, but also into questions of
immediate practical relevance, such as: what force does a mem-
brane respond with upon deformation? How does it adapt its
shape when it adheres to a substrate or another membrane, and
how does it remodel the other membrane in the latter case? And
what types of forces does it transmit between multiple objects
binding to it? Despite the stress tensor’s intuitive physical mean-
ing, physicists seem to be somewhat shy to use it, whereas for
instance mechanical engineers have developed highly sophisti-
cated frameworks largely unheard-of in the physics community
(Jenkins, 1977a,b; Steigmann, 1999; Agrawal and Steigmann, 2008;
Napoli and Vergori, 2010). I suspect the reasons are twofold: First,
once physicists learn about Lagrangian or Hamiltonian Mechanics,
the concepts of stress and force might appear a quaint remnant
of the olden Newtonian days, best to be avoided. This of course
is a luxury one can only afford in a world consisting of point par-
ticles, but not one that is populated with elastic continua.3 And
second, in order to express the stress tensor in a geometric language
free of the idiosyncrasies of arbitrary surface parametrizations, one
needs some differential geometry (of course, so do the engineers).
And even though the amount necessary to understand virtually the
entire framework from scratch is remarkably modest, it might still
prove too much of an activation barrier.

It is the purpose of this review to provide a helping hand
over this barrier. While there are excellent textbooks on differ-
ential geometry aplenty (Kreyszig, 1991; do Carmo, 1976, 1992;
Willmore, 2012; Spivak, 1970, 1975a,b; Lovelock and Rund, 1989;
Frankel, 2004; Schutz, 1980; Darling, 1994; Flanders, 1989), the
bare minimum necessary to follow most of the reasoning and all
of the subsequent applications can be condensed into a couple
of pages. This review is aimed towards researchers who wish to
learn more about these concepts, but who have no working expe-
rience with differential geometry and do not wish to invest several
months to study the mathematical prerequisites before they can
decide whether it is even worthwhile to adopt this framework.
What follows will therefore be akin to a teaser trailer, focusing on
the highlights in an abbreviated fashion, hoping to convince the
reader that it’s worthwhile to watch the whole movie (or, even
better, read the book).

This review is organized as follows. Section 2 starts by sum-
marizing the essential differential geometry of two-dimensional
surfaces embedded in three-dimensional space. Beginning with
a general purpose parametrization, metric and curvature tensor
are introduced, and their connecting integrability conditions are
developed. Along the way the issues of co- and contravariant
components are clarified and the notion of a covariant derivative is
introduced. In Section 3 these tools are used to derive the Helfrich
Hamiltonian as the essentially unique large-wavelength limit of
what physics and symmetry permit, and its phenomenological
parameters are discussed in some detail, after a quick glance at thin
plate theory. The relation between bilayer and monolayer physics
is discussed within the framework of parallel surfaces, and a few
comments on higher order corrections are made. Section 4 derives
the stress tensor from first principles, beginning with a motivation
for why membrane stresses differ from those in soap films or
simple fluid surfaces. After revisiting the concept of a surface vari-
ation, and arriving at the classical shape equation by varying the
geometry and ultimately the Helfrich Hamiltonian piece-by-piece,

3 The Landau/Lifshitz volume on elasticity (Landau and Lifshitz, 1999) pithily dis-
abuses the reader of this misconception by introducing the strain tensor in Chapter
1 paragraph 1, and the stress tensor in paragraph 2; however, elasticity is no longer
part of the standard physics curriculum.
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