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a b s t r a c t

Biological membranes are complex structures whose mechanics are usually described at a mesoscopic
level, such as the Helfrich bending theory. In this article, we present the phase-field methods, a useful
tool for studying complex membrane problems which can be applied to very different phenomena. We
start with an overview of the general theory of elasticity, paying special attention to its derivation from
a molecular scale. We then study the particular case of membrane elasticity, explicitly obtaining the
Helfrich bending energy. Within the framework of this theory, we derive a phase-field model for biological
membranes and explore its physical basis and interpretation in terms of membrane elasticity. We finally
explain three examples of applications of these methods to membrane related problems. First, the case
of vesicle pearling and tubulation, when lipidic vesicles are exposed to the presence of hydrophobic
polymers that anchor to the membrane, inducing a shape instability. Finally, we study the behavior of red
blood cells while flowing in narrow microchannels, focusing on the importance of membrane elasticity
to the cell flow capabilities.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Like many other organelles at the cell scale, membranes are
composite structures that exhibit a bewildering complexity. Their
basic ingredient is a lipid bilayer composed by hundreds of dif-
ferent lipid species. The bilayer also contains a dense population
of transmembrane proteins, which could represent up to 70% of
the total mass of the membrane, and in fact these molecules
define the functionality of the membrane (Alberts et al., 1994).
Many other proteins are anchored to both sides of the bilayer,
and membrane composition is balanced by lipid reservoirs which
ensure that the physiological properties of the membrane are
maintained. Among others, membranes define the cell frontiers,
separating the cytosol from the external environment. They also
maintain ion gradients which are necessary to produce ATP, and
host the proteins that control cell signaling. Focusing specifically
on the structural function, membranes present a delicate inter-
play with the cortex cytoskeleton, a complex mesh formed by
filaments of actin preserving cell inner structure and shape, and
provides strength and compactness. This picture represents, how-
ever, just a rough description of the membrane composition and
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function, included here to evidence its extreme complexity. The
comprehensive understanding of this fascinating system requires
of different level of approaches. At the molecular scale, the detailed
running of each microstructure can be analyzed thoroughly from
the electrochemical interactions between their molecular compo-
nents. However, the all-encompassing response of the membrane
elements invites to a more general description, and physical the-
ories such as the elastic formalism of plates and surfaces offer a
formidable tool to characterize biological membranes. At this point,
it is convenient to remark that physicists have focused on the spe-
cific study of the human erythrocyte (Sackmann, 1995). This cell
is unique among the rest of cells of the organism because it lacks
any organelle and inner structure, so that all its physical proper-
ties are entirely determined by its membrane, representing a much
simpler structure than normal cells. The membrane of the erythro-
cyte is composed by a lipid bilayer with and underlaying spectrin
cytoskeleton which anchors to the cytosolic side of the bilayer. This
two-dimensional scaffold has a structural function, preventing the
cell from vesiculation and large deformations.

In order to build a physical theory of the membrane, the com-
plexity of the cell membrane suggests to consider the scales of
interest. Our scope is to study phenomena at the cell scale, such as
cell morphological deformations or mechanical interactions with
the environment. In this context, the atomic description is clearly
unaffordable: the difficulty of dealing with such a vast number
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of interactions between atoms, even in simple molecules such as
lipids, discards any treatment at this scale. Coarse-grained descrip-
tions, which represent each lipid by a number of beads (typically
3–10) that encompass a region of the molecule with similar prop-
erties (Marrink et al., 2007; Shillcock and Lipowsky, 2006), offer
a path for the study of small sized patches of membranes. The
state-of-the-art numerical methods are able to describe the kinetics
of typically 106 molecules (Marrink and Tieleman, 2013), involv-
ing membrane domains of roughly 100 nm × 100 nm, but still far
from the macroscopic cell scale, 10 �m × 10 �m. It is clear that
coarse-grained methods are, still, not appropriate if one pretends
to study the overall cell response. For this purpose, it is convenient
to invoke mesoscopic theories (Deserno, 2009). By considering the
membrane as locally homogeneous and introducing a continuum
description, each small part of the membrane is characterized by
some certain local properties. These properties must be consis-
tent with the local molecular structure of the membrane, so that a
connection between the micro and mesoscales should be derived.

This Chapter does not intend to describe in detail the basis of
mesoscopic theories in the context of membranes, a subject which
has received extensive attention elsewhere (Safran, 1994), but to
motivate one of the most relevant methods for studying interface
dynamics, the so-called phase field method, as an important tool
in the study of membrane elasticity and kinetics. Phase-field mod-
els for biological membranes are based on the Helfrich description
of membranes (Helfrich, 1973), a modified formulation of the the-
ory of elasticity. We will start presenting this theory and studying
its application to lipid membranes, in order to gain some intuition
about the physics and elasticity of these structures, and paying spe-
cial attention to its derivation from the molecular description of
the membrane. The main characteristics of membrane elasticity
are addressed to be subsequently incorporated to the phase-field
model. Then, we will explain the basis of the phase-field meth-
ods and how they can be used to model membranes. Finally, we
will conclude with some examples of current research on biological
membranes that make use of this methodology.

2. The curvature energy

The theoretical study of membranes at the cell scale was first
performed by Canham (1970), Helfrich (1973), and Evans (1974).
They concentrated on the identification of the relevant elastic prop-
erties of the erythrocyte membrane by trying to reproduce its
distinctive discocyte shape. The main assumption of their approach
is that the cell membrane can be described as a two-dimensional
sheet, based on its minute thickness compared to the cell length.
Helfrich proposed that from the three main type of deformations
that a layer can undergo, shear, tilt and bending, only the last does
play a relevant role in the membrane elasticity. Accordingly, he
proposed a curvature energy to describe the elasticity of cell mem-
branes,

Fb = �

2
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where C = (c1 + c2) and G = c1c2 are the total an Gaussian curva-
tures of the membrane surface given by principal curvatures c1
and c2, � and �G are the bending rigidity and saddle-splay mod-
ulus, C0 is the so-called spontaneous curvature that accounts for
any asymmetry in the membrane internal structure, whereas � and
�p generically represent a surface tension and a pressure differ-
ence across the membrane. In the Helfrich initial description, these
two components are Lagrange multipliers to ensure that cell area
and volume, respectively, are conserved. The curvature energy (1)
is often expressed in the literature in terms of the mean curva-
ture H = (1/2)(c1 + c2), though we follow here the total curvature

notation. It is remarkable that the integral of the Gaussian cur-
vature over a surface is a topologic invariant, and consequently it
only plays a role in the membrane elasticity in processes compris-
ing topological transformations. For the case of closed membranes,
such as cells, the Gaussian term remains constant and for simplicity
it can be ignored. The minimization of (1) for an ellipsoidal shape
under the appropriate values of area and volume leads to the bicon-
cave discocyte of the RBC as the equilibrium shape. Ensuing studies
investigated the properties and minimal shapes of the Helfrich
energy and the theory has been refined to incorporate additional
mechanisms such as the area-difference elasticity (Sheetz and
Singer, 1974). Subsequently, the elastic contribution of the spectrin
cytoskeleton which attaches to the lipid membrane was incorpo-
rated, with the aim of explaining the entire phenomenology of the
human red blood cell (Evans, 1974; Iglic, 1997). The cytoskeleton
provides resistance to in-plane deformations and plays a funda-
mental role in the cell response under certain deformations (such
as morphological changes during crenation (Lázaro et al., 2013)
or squeezing during optical tweezers experiments, Li et al., 2005),
adding a shear-stretching contribution to the membrane elasticity.
In our phase-field model we do not consider the cytoskeleton con-
tribution and it therefore applies to problems in which this network
is absent (such as in membranes of cell organelles, e.g. in the Golgi
apparatus) or if it plays a subdominant role, as occurs during blood
flow Forsyth et al. (2011).

In the last years, the Helfrich model has been incorporated
to different dynamic theories, offering the possibility of study-
ing new and more complicate phenomena. Many of the results
of this theory have proven in good agreement with experiments;
nice examples include the theoretical prediction of shapes of the
stomatocyte–echinocyte transition (Lim et al., 2002), the study of
tubulation when polymers are attached to a lipid vesicle and effec-
tively induce a spontaneous curvature (see Section 4) (Campelo and
Hernández-Machado, 2008), or the experiments of stretching of red
blood cells with optical tweezers (Li et al., 2005). In this section, we
first discuss the microscopic basis of the Helfrich theory in order
to show the consistency of the mesoscopic approach. We subse-
quently present the general theory of elasticity and its main results
and applications to biological membranes.

2.1. Microscopic realization

Any mesoscopic description assumes that one can define
domains of small size compared to the length scale of the system
size, so that the variables defined at the mesoscale (i.e. at each of
these domains) capture the relevant properties of the microscale.
With the objective of explaining this fundamental assumption, we
present here the simple model proposed by Petrov and Bivas (1984)
which, in spite of being highly non-realistic, is useful to naively
illustrate the connection between both scales. The model assumes
a rough description of the interactions between lipids, and from this
simple basis the Helfrich free energy (1) for a bilayer is derived.

The model assumes a harmonic approximation of the free
energy per molecule,

fm = 1
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where AH/T are the areas per molecule of the head/tail, respectively,
and kH/T are the harmonic constants related to the respective inter-
actions between each group. A0 are the preferred areas, related with
the equilibrium intermolecular distance in the relaxed monolayer.
Still, the effective constants kH/T should be related with the specific
bonds between molecules, but this is difficult to address at this
simple level of description. If one defines the neutral surface as the
point of the lipid where the forces are balanced, and we call A the
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