

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Original article

Synthesis of α -SnWO₄ thin-film electrodes by hydrothermal conversion from crystalline WO₃

Kayla J. Pyper, Taylor C. Evans, Bart M. Bartlett*

Department of Chemistry University of Michigan, Ann Arbor, MI 48109-1055, USA

ARTICLE INFO

Article history: Received 22 December 2014 Received in revised form 9 January 2015 Accepted 16 January 2015 Available online 31 January 2015

Keywords: Alpha tin tungstate Hydrothermal conversion Microstructure Hydrothermal method

ABSTRACT

Thin film electrodes of the orthorhombic form of tin tungstate (α -SnWO₄) were prepared using a hydrothermal method to convert thin films of WO₃ in aqueous SnCl₂. The pH dependence of the growth mechanism was identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns show complete conversion of WO₃(s) to SnWO₄(s) at pH 1, 4, and 7. SEM images reveal a morphology change from sponge-like platelets to sharp nanowires as the pH increases from 1 to 7. The α -SnWO₄ thin films were reddish brown in color, and display an indirect band gap of 1.9 eV by diffuse reflectance UV-vis spectroscopy. α -SnWO₄ is therefore solar-responsive, and a chopped light linear sweep voltammogram recorded under 100 mW/cm² AM1.5 simulated solar illumination in a pH 5 0.1 mol/L KP_i buffer show a visible light response for photoelectrochemical water oxidation, producing 32 μ A/cm² at 1.23 V vs. RHE.

© 2015 Bart M. Bartlett. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved.

1. Introduction

With an increasing demand and use of energy worldwide, using semiconductors to harness solar energy has been identified as a viable solution for generating chemical fuels [1], both to provide the driving force for transforming water into hydrogen, as well as a means to provide the oxidizing power for large industrial processes, thereby replacing harsh chemical oxidants [2,3]. Many metal oxide semiconductors have been interrogated for their chemical stability, optical properties, and surface catalytic reactivity. For example, TiO_2 ($E_g = 3.0 \text{ eV}$) [4], Fe_2O_3 (2.2 eV) [5], WO₃ (2.7 eV) [6], BiVO₄ (2.4 eV) [7], and CuWO₄ (2.4 eV) [8] are n-type semiconductors that have been studied for oxidative catalysis such as water oxidation. A large emphasis has been placed on using materials with a band gap between 2 eV and 3 eV since this energy encompasses maximum of the solar spectrum (400–800 nm light comprises \sim 50% of the solar flux that reaches the earth's surface) and accounts for reaction overpotential. For these purposes, we began exploring the optical and electronic properties of α -SnWO₄ as a thin film electrode.

Despite its calculated band gap of 2.5 eV [9], there are several synthetic challenges for producing α -SnWO₄ due to the relative

air. There are examples of forming α -SnWO₄ by hydrothermal synthesis methods using surfactants under milder, less oxidizing conditions [12,13]. However, these syntheses start from an amorphous precipitate having a 1:1 Sn:W ratio. Therefore synthetic methods with these restrictions become increasingly more complicated when extrapolated to thin film synthesis. The most common technique to produce thin film electrodes is depositing a solution of dissolved precursors onto a conducting substrate, followed by high temperature calcination and annealing. In the case of generating SnWO₄, the precipitation reaction to generate powder takes place if both precursors are co-dissolved $(SnCl_2(aq) + Na_2WO_4(aq) \rightarrow SnWO_4(s) + 2NaCl(aq))$. Also, solution methods employing WCl₆ and SnCl₂ carried out in organic solvents (*i.e.* ethanol) to control morphology are problematic since combustion of the solvent cannot occur in a reducing or vacuum atmosphere. Herein we demonstrate the first synthetic method to produce phase pure α -SnWO₄ film electrodes (*i.e.*-not produced from a powder slurry) by a simple hydrothermal method on a fluorinated tin oxide (FTO) transparent conducting substrate without using inert or vacuum atmosphere. This synthesis was accomplished by first synthesizing monoclinic

instability of Sn²⁺ compared to Sn⁴⁺. Several groups have produced

powder samples of orthorhombic α -SnWO₄ as well as cubic

 β -SnWO₄ by calcining in either an inert or vacuum atmosphere as

well as by hydrothermal processes [10–12]. Inert or vacuum atmosphere is necessary because Sn^{2+} is readily oxidized to Sn^{4+} in

^{*} Corresponding author. E-mail address: bartmb@umich.edu (B.M. Bartlett).

http://dx.doi.org/10.1016/j.cclet.2015.01.027

^{1001-8417/© 2015} Bart M. Bartlett. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved.

 WO_3 on FTO and converting it to $\alpha\mbox{-}SnWO_4$ in an aqueous $SnCl_2$ solution.

2. Experimental

All reagents were purchased from Sigma Aldrich and used as received with no further purification. FTO films (Pilkington glass) were washed with ethanol and acetone and sonicated for 15 min each. WO_3 was prepared by a known procedure [14]. Sodium tungstate dihydrate, Na₂WO₄·2H₂O, (0.308 g, 9.34×10^2 mmol) was dissolved in 40 mL deionized water. 3 mol/L HCl (13.34 mL, 4×10^4 mmol) was added dropwise to the stirring solution, which formed a yellow precipitate. Next, ammonium oxalate, $(NH_4)_2C_2O_4$, (0.267 g, 2.15×10^3 mmol) was added and the solution became clear and colorless. An additional 40 mL of deionized water was added, and the solution was stirred for 30 min. Then, 11.5 mL aliguots of solution were transferred to 23 mL PTFE liners (Parr Instrument Company). The FTO films were masked off with PTFE tape to a surface area of 1 cm² so that deposition onto the FTO area was controlled. The films were placed face down in the liner and sealed in a stainless steel autoclave. The vessels were held at 120 °C for 12 h with a 10 °C/min ramp rate. These films were either kept as is (WO₃·H₂O, yellow/green in appearance) or annealed in air at 450 $^{\circ}$ C for 1 h (monoclinic WO₃, green/white in appearance). A 0.5 mol/L SnCl₂ solution was made that had an initial pH of \sim 1. Next the WO₃·H₂O or WO₃ films were placed face down in the hydrothermal vessel filled with 14 mL of 0.5 mol/L SnCl₂ solution whose pH was 1 or adjusted to 4 or 7 with 7 mol/L NaOH and 3 mol/L HCl. The vessels were sealed in steal autoclaves and heated for 24 h at 180 °C with a 10 °C/min ramp rate. The films were rinsed with 3 mol/L HCl to remove any tin chloride hydroxide crystals that formed during the hydrothermal reaction (Fig. S1 in Supporting information). In a control experiment WO₃ films were placed face down in the hydrothermal vessel filled with 14 mL of water adjusted to pH 7 with 7 mol/L NaOH. This control experiment was also carried out in 1 mol/L NaCl to keep the ionic strength of chloride constant in the reaction.

X-ray diffraction patterns were recorded on a Bruker D8 Advance diffractometer equipped with a graphite monochromator, a Lynx-Eye detector, and parallel beam optics using Cu-*K* α radiation (λ = 1.54184 Å). Patterns were collected using a 0.6 mm incidence slit, with a step size and scan rate of 0.04°/step and 0.5 s/step, respectively. Phases were identified as WO₃·H₂O (JCPDF 43-0679), WO₃ (JCPDF 72-1465), and SnWO₄ (JCPDF 70-1049) using MDI Jade version 5.0. UV-vis spectra were recorded using a Cary 5000 spectrophotometer (Agilent) equipped with an external diffuse reflectance accessory. Spectra were recorded in reflectance mode, and Tauc plots were then generated using the Kubelka– Munk function, $F(R) = (1-R)^2/2R$. Scanning electron microscope images were collected using a FEI Nova Nanolab SEM/FIB with an accelerating voltage of 15 kV.

Photoelectrochemical (PEC) measurements were performed using a custom-built, three-electrode Pyrex glass cell with a quartz viewing window. The cell contained the working thin-film SnWO₄ photoelectrode, an Ag/AgCl reference electrode in saturated KCl (+0.20 V vs. NHE), and a platinum auxiliary electrode. For water oxidation reactions, the supporting electrolyte used was a 0.1 mol/L potassium phosphate buffer (KP_i) solution at pH 5.00. Electrical contact was made to the FTO substrate by attaching copper wire purchased from Fisher Scientific and using CG Electronics Silver Print II. Electrodes were sealed using Loctite Hysol 1C epoxy. The light source was a Newport-Oriel 150 W Xe arc lamp fitted with a Newport AM 1.5 G filter to simulate incident solar radiation. The lamp power was adjusted to 100 mW/cm² using a Newport 1918-R optical power meter equipped with a Newport 818P-015-19 thermopile detector. Voltammetry measurements were performed with a CH Instruments 660C Electrochemical Workstation.

3. Results and discussion

The goal of this work is to synthesize α -SnWO₄ electrodes using a simple method that excludes the need for an inert or vacuum atmosphere, and avoids adding an annealing step. We synthesized pure α -SnWO₄ films in aqueous SnCl₂ solution from a previously synthesized monoclinic WO₃ film. The solution did not require deaeration or handling under inert conditions, as all of the synthetic steps were performed aerobically. Orthorhombic WO₃·H₂O electrodes were generated by a known hydrothermal synthesis method. This compound is composed of layers of corner sharing octahedrally coordinated WO₅(H₂O) units [14]. Corner sharing WO₆ octahedra comprise the structure after annealing, and a hydrothermal method was employed to convert monoclinic WO₃ to red-brown films of α -SnWO₄ in a subsequent hydrothermal reaction using a 0.5 mol/L solution of SnCl₂ at pH 1, 4 and 7. XRD patterns show the complete conversion to α -SnWO₄ at each pH (Fig. 1). The *hkl* reflections are shown for low 2θ values for the purposes of discussion. The final α -SnWO₄ product is orthorhombic, but also contains corner-sharing WO₆ octahedra with Sn atoms layered in between, illustrated in Scheme 1. The XRD at pH 1 (black trace Fig. 1) displays a difference in peak intensity for low 2θ values compared to pH 4 and 7. Specifically the (0 2 0), (1 1 1), (1 2 1), and (040) reflections show a change in intensity. Therefore, the preferred orientation or morphology of the film is directed by the pH of the SnCl₂ solution. Converting tungsten oxide hydrate $(WO_3 \cdot H_2O)$ films to α -SnWO₄ also occurs under similar conditions at pH 1 (Fig. S2 in Supporting information), 3, 4 and 5 (Fig. S3 in Supporting information). The WO₃·H₂O films converted to α -SnWO₄ at pH 3, 4, and 5 exhibit similar intensities to that of the crystalline WO₃ conversion to α -SnWO₄ at pH 4 and 7. However, WO₃·H₂O films converted to α -SnWO₄ at pH 1 display similar changes in intensity of *hkl* reflections as seen in the black trace in Fig. 1. The intensities in Fig. S2 are stronger than that of the pH 1 solution for crystalline WO₃, which is likely due to the fact that the orthorhombic structure is maintained from WO₃·H₂O to α -SnWO₄ as similar reflections appear in the XRD of the WO₃·H₂O film before conversion (Fig. S4 in Supporting information).

Fig. 1. X-ray diffraction patterns of pure α -SnWO₄ films. From the bottom to the top the pH of the hydrothermal solution was pH 1 (black), pH 4 (red), and pH 7 (blue). FTO peaks are represented by the violet vertical lines and α -SnWO₄ is represented by the green vertical lines.

Download English Version:

https://daneshyari.com/en/article/1254066

Download Persian Version:

https://daneshyari.com/article/1254066

Daneshyari.com