Synthesis of 5-benzylidene-3-(3-fluoro-4-yl-morpholin-4-yl-phenylimino)-thiazolidin-4-one derivatives catalyzed by [BmIm]OH and their anti-microbial activity

Sudhakar G. Patil a,*, Rahul R. Bagula a, Mangesh S. Swami a, Nandini Kotharkar b, Kalpana Darade b

a Organic Chemistry Research Laboratory, Maharashtra Udaygiri Mahavidyalay, Udgir 413517, Maharashtra, India
b G. H. Raisoni Institute Interdisciplinary Sciences Wagholi, Pune 411 001, India

Received 8 October 2010
Available online 18 May 2011

Abstract
A series of novel 5-benzylidene-3-(3-fluoro-4-yl-morpholin-4-yl-phenylimino)thiazolidin-4-one derivatives were synthesized using [bmIm]OH as a catalyst and were tested for their antibacterial and antifungal activities. These compounds showed moderate in vitro activities against the microorganisms tested.

© 2011 Sudhakar G. Patil. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Basic ionic liquid; [bmIm]OH; Antimicrobials; Anti-bacterial; Anti-fungal; Iminothiazolidin-4-one

4-Phenyl-morpholine derivatives are reported to possess antimicrobial [1,2] and antiinflammatory [3–5] activities. 4-Thiazolidinone derivatives are also known to possess antibacterial [6–10], antifungal [11–13], antiviral [14] and antituberculosis [15–17] properties. Linezolid (PNU-10766, commercially available antimicrobial drug) possess 4-(2-flourophenyl) morpholine moiety, these observations led to the conception that 5-benzylidene derivatives of 3-ethyl-2-(3-fluoro-4-orphin-4-yl-phenylimino)-thiazolidin-4-one would possess potential anti-microbial properties (Fig. 1). Several methods were reported in the literature for the preparation of thiazolidinone derivatives [18] and iminothiazolidin-4-one derivatives [19].

In the present study a novel series of 5-benzylidene-3-ethyl-2-(3-fluoro-4-yl-morpholin-4-yl-phenylimino)-thiazolidin-4-ones were synthesized. The key steps of formation of iminothiazolidinone (5) and its Knoevenagel condensation with aryl aldehyde to 5-benzylidene-3-(3-fluoro-4-yl-morpholin-4-yl-phenylimino)-thiazolidin-4-one (6) were carried using basic ionic liquid [bmIm]OH [20] as a catalyst as well as solvent, with excellent yields.

Our synthetic strategy for thiazolidinone derivatives is illustrated in Scheme 1. The synthesis starts with reaction of 2,4-difluoro-1-nitrobenzene (1) with morpholine and potassium carbonate in dimethylformamide at 80 °C afforded 4-(3-fluoro-4-nitrophenyl)morpholine (2) which on catalytic reduction using H2/Pd/C in methanol afforded 2-fluoro-4-morpholin-4-yl-phenylamine (3) [21]. The phenylamine (3) was further treated with ethylisothiocynate in ethanol at
80 °C afforded 1-ethyl-3-(2-fluoro-4-morpholin-4-yl-phenyl)-thiourea (4) [22]. 1-Ethyl-3-(2-fluoro-4-morpholin-4-yl-phenyl)thiourea (4) was treated with ethylbromoacetate in basic ionic liquid [bmIm]OH at room temperature, the key intermediate 3-ethyl-2-(2-fluoro-4-morpholin-4-yl-phenylimino)thiazolidin-4-one (5) was isolated with 95% yield [23]. 1H NMR spectrum of compound 5 shows a singlet at 4.02 ppm for two protons is characteristic value of C-5 protons of the iminothiazolidinone nucleus. The strong absorption bands at 1708 cm$^{-1}$ and at 1620 cm$^{-1}$ confirms the presence of C=O and C=N functional groups respectively and hence confirms the formation of iminothiazolidinone compound 5. This clearly indicates that basic ionic liquid [bmIm]OH catalyzes cyclization of thiourea with ethyl bromoacetate which is a key step in the current synthesis.

This key intermediate iminothiazolidin-4-one (5) on Knoven-gel condensation with different substituted aryl aldehydes in [bmIm]OH afforded the 5-benzylidene-3-ethyl-2-(3-fluoro-4-yl-morpholin-4-yl-phenylimino)thiazolidin-4-one 6(a–p) in excellent yields (Table 1) [24]. The ionic liquid used in the reaction was recovered from aqueous layer and washed with diethyl ether to remove any organic impurities and dried under vacuum to get the pure ionic liquid and was reused for the above reactions. We have tested reusability of ionic liquid for compound (6j), upon use of three times, showed no loss of its activity and does not vary yield of final product. All these compounds were characterized by IR, 1H NMR and MS [26]. These compounds were further used for the biological studies.

The antimicrobial activity of the compound was assayed by antimicrobial susceptibility test [25]. 100 µL of 24 h growth of each microorganism was spread on the surface of nutrient agar for bacteria (Mac Conkey’s agar for Escherichia coli) and potato dextrose agar for fungi, in Petri plates. 50 µL compound at the concentration of 100 µg/mL in DMSO saturated on discs of 6 mm diameter were kept on agar surface. The plates refrigerated for two hours to allow prediffusion of the compound from the discs in to the seeded agar layer and then incubated at 37 °C for 24 h for bacteria and 28 °C for 48 h for fungi. Zones of inhibition were measured in mm and size of the disc was subtracted from the zone size to measured final activity. DMSO saturated discs served as solvent control or negative control and Streptomycin saturated discs (30 µg) for bacteria and Nystatin (30 µg) for fungi as a reference or positive control.

The newly synthesized compounds were tested to evaluate their antibacterial and antifungal activity. All these compounds were found to exhibit moderate antibacterial and antifungal activity against different species of bacteria and fungi. From the activity data (Table 1) it was observed that among all the compounds tested, compound 6o shows good activity against all the tested bacteria and fungi. Among all tested bacteria and fungi compound 6o showed good

![Scheme 1. Synthetic scheme for compound 6(a–p).](image-url)

Download Persian Version:

https://daneshyari.com/article/1254821

Daneshyari.com